Use the vertex form, y=a(x−h)2+k y = a ( x - h ) 2 + k , to determine the values of a a , h h , and k k . Since the value of a a is positive, the parabola opens up. Find p p , the distance from the vertex to the focus. Find the distance from the vertex to a focus of the parabola by using the following formula.
I really hope this answer helps you out! It makes my day helping people like you and giving back to the community that has helped me through school! If you could do me a favor, if this helped you and this is the very best answer and you understand that all of my answers are legit and top notch. Please mark as brainliest! Thanks and have a awesome day!
Answer:
3/8 or 0.375 or 37.5%
Step-by-step explanation:
red, blue, yellow gumballs = 125 total
green gumballs= 75
75 green/200 total gumballs
simplified = 3/8
Answer:C
Step-by-step explanation:
24/6=4
P6R2/ P2Q2R6
Cancel you have P4 left on top
Cancel you have R4 left on bottom
Q2 stays at bottom
Here L = W, but H can be different.
The sum L+H+W must be less than or equal to 192 cm.
We can solve L + H + W = 192 for H: H = 192 - W - L. Remembering that W = L, the formula for H becomes 192 - 2W.
The formula for volume would be V = L*W*H.
This becomes V = W*W*H, or V = W^2*(192-2W)
Multiplying this out: V = w^2*192 - 2W^3
Two ways of determining W:
1) graph V = 192W^2 - 2W^3 and determine the value of W at which V is at a max with the constraint W + L + H is equal to or smaller than 192.
2) Differentiate V with respect to W and set the result equal to zero:
384W - 6W^2 = 0. Solving for W: W(384 - 6W) = 0.
W = 0 is trivial, so just solve 384 - 6W = 0 for W: 6W = 384, and W = 64.
The width is 64 cm, the length is 64 cm also, and the height is (192-2W) cm, or 64 cm.
These dimensions produce the max volume.
Answer:
Step-by-step explanation: