1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rina8888 [55]
3 years ago
6

A box with an open top has vertical sides, a square bottom, and a volume of 108 cubic meters. if the box has the least possible

surface area, find its dimensions. (in your answer leave a space between the number and the unit.)
Mathematics
1 answer:
Colt1911 [192]3 years ago
7 0
Let x be the height  of the  box and y be the length of one side of the base then:-

V = xy^2 = 108

x = 108/y^2

Surface area = y^2 + 4xy 
S = y^2 + 4y* 108/y^2
S = y^2 + 432/y
Finding the derivative:-
dS/dy  = 2y - 432/y^2  = 0
2y^3 = 432
y^3 = 216
y = 6 

Check if this gives a minimum value:-
second derivative = 2 + 864/y^3  which is positive so  minimum.

V = xy^2 = 108
36y = 108
y = 3

Answer :-  dimensions of the box is 3*6*6 metres


 
You might be interested in
Help me with this please anyone x
Murrr4er [49]
\bf \begin{array}{cccccclllll}
\textit{something}&&\textit{varies directly to}&&\textit{something else}\\ \quad \\
\textit{something}&=&{{ \textit{some value}}}&\cdot &\textit{something else}\\ \quad \\
y&=&{{ k}}&\cdot&x
\\
&&  y={{k }}x
\end{array}\\\\
-------------------------------\\\\

\bf \textit{we know that }\qquad 
\begin{cases}
y=42\\
x=6
\end{cases}\implies 42=k6\implies \cfrac{42}{6}=k
\\\\\\
7=k\impliedby \textit{constant of variation}
\\\\\\
thus\qquad \qquad y=7x
\\\\\\
\textit{what is "y" when x=5?}\qquad y=7(5)\impliedby \textit{solve for "y"}
\\\\\\
\textit{what is "x" when y=28?}\qquad 28=7x\impliedby \textit{solve for "x"}
6 0
4 years ago
Simplify : 7x^2 + 6x + 9x^2 - 5x
anastassius [24]

Answer:

131x

Step-by-step explanation:

7x² + 6x + 9x² - 5x

49x + 6x + 81x - 5x

136x - 5x

131x

7 0
3 years ago
Find the common ratio of the geometric sequence:<br> 1.512, 7.56, 37.8, 189, 945, .... ...?
SVEN [57.7K]
5
To find the ratio you simply divide the value by the previous value
7.56/1.512 = 5
37.8/7.56 = 5
7 0
3 years ago
Plz solve this problem of trigonometry<br>i am an aakashian​
makkiz [27]

Step-by-step explanation:

\bf L.H.S = \tt \dfrac{sec\: \theta + tan \:  \theta - 1}{tan \:  \theta - sec \:  \theta + 1}  \\  \\

:  \implies \tt \dfrac{\frac{1}{cos  \: \theta}  +  \frac{sin \:  \theta}{cos \: \theta}  - 1}{  \frac{sin \:  \theta}{cos \:  \theta} -  \frac{1}{cos \:  \theta} + 1   } \:  =   \dfrac{1 + sin \:  \theta - cos \:  \theta}{sin \: \theta + cos \:  \theta} \\  \\

: \implies \tt\dfrac{ sin \:  \theta - (cos \:  \theta - 1)}{sin \: \theta + (cos \:  \theta - 1)} \:  \times  \: \dfrac{ sin \:  \theta - (cos \:  \theta - 1)}{sin \: \theta  -  (cos \:  \theta - 1)} \\  \\

: \implies \tt\dfrac{ sin^{2}  \:  \theta  + cos^{2}  \:  \theta  + 1 - 2  \: cos \:  \theta  - 2  \: sin \:  \theta \: (cos \:  \theta - 1)}{sin^{2}  \: \theta  -  (cos \:  \theta - 1)^{2} } \\  \\

: \implies \tt\dfrac{1 + 1 - 2 \:  cos \:  \theta - 2 \: sin \:  \theta  \: cos \:  \theta + 2 \: sin \: \theta}{sin^{2} \: \theta + cos^{2} \: \theta - 1 + 2 \: cos \:  \theta } \\  \\

: \implies \tt\dfrac{2 - 2 \:  cos \:  \theta - 2 \: sin \:  \theta  \: cos \:  \theta + 2 \: sin \: \theta}{sin^{2} \: \theta + cos^{2} \: \theta  - sin^{2} \:  \theta - cos^{2}   \:  \theta  + 2 \: cos \:  \theta } \\  \\

: \implies \tt\dfrac{2 (1 - \:  cos \:  \theta )- 2 \: sin \:  \theta  (1 - \: cos \:  \theta)}{ 2 \: cos \: \theta - 2 \: cos^{2}   \:  \theta} \\  \\

: \implies \tt\dfrac{(2  +  2 \:  sin \:  \theta)  \:  \cancel{(1 -  cos\:  \theta)}}{2 \: cos \:  \theta  \:  \cancel{(1 - cos \:  \theta)}} \:  =  \:  \dfrac{1 + sin \:  \theta}{cos \: \theta}  \\  \\

: \implies\tt\dfrac{1 + sin \:  \theta}{cos \: \theta}  \:  \times  \: \dfrac{1  -  sin \:  \theta}{1 - sin \: \theta} \\  \\

:  \implies\tt\dfrac{1 + sin^{2}  \:  \theta}{cos \: (1 - sin \: \theta)} \\  \\

:  \implies\tt\dfrac{cos^{2}  \:  \theta}{cos \: \theta (1 - sin \: \theta)} \\  \\

:  \implies\tt\dfrac{cos \:  \theta}{1 - sin \: \theta}  \:  = \:  \bf{ R.H.S}\\  \\

\huge\bigstar  \:\underline{\red{\sf Hence, Proved}} \:  \bigstar \\

6 0
4 years ago
PLEASE HELP WILL MARK BRAINLY
Romashka-Z-Leto [24]

Step-by-step explanation:

diameter is 84 thereare 2 time 42 .84.

follow me nice study bye .

7 0
3 years ago
Other questions:
  • The price of your favorite brand of jeans is $35 last month. This month the price is $42. What is the percent of change from las
    15·1 answer
  • Solve the simultaneous equations y =x+2 and x + y = 3
    9·2 answers
  • Simone applied the distributive property using the greatest common factor to determine the expression that is equivalent to 24 +
    9·1 answer
  • Simplify the expression <br> 9 + 10h + -5h = 0 <br><br> Please show steps
    15·1 answer
  • TRAP is a trapezoid. If TR= 17 and PA= 23, then find the length of EF .
    15·2 answers
  • Is the decimal terminating or repeating?<br> 0.3
    8·1 answer
  • If $(2x+5)(x-3)=14$, find the sum of the possible values of $x$.
    7·1 answer
  • HELP, x/45 = 55/100?
    7·2 answers
  • 1 by 4 of rupees 828 explaine it​
    10·1 answer
  • What is the value of p?<br><br><br><br> 10p+5=18p–62
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!