The circle was 126 meters around.
Step-by-step explanation:
Step 1; It is given that the big circle was 40 feet across the center. This implies the distance from any particular point on the circle to any other point is 40 feet. This means the diameter of this given circle is 40 feet. Any given circle's radius is 0.5 times the diameter of that same circle. So we divide 40 by 2 to get the circle's radius. So the radius is 40/2=20 feet. So the radius of this given circle is 20 feet.
Step 2; To find how many feet around means we need to find perimeter and not area. Area means the region inside the circle whereas perimeter is how long the circle is i.e how long the circle around is. So the distance around this circle is 2 multiplied with pi and its radius. The distance around any given circle = 2πr.
Perimeter of this circle = 2 × 3.141592 × 20 = 125.6637 feet.
Answer:
We have the matrix ![A=\left[\begin{array}{ccc}-4&-4&-4\\0&-8&-4\\0&8&4\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%26-4%26-4%5C%5C0%26-8%26-4%5C%5C0%268%264%5Cend%7Barray%7D%5Cright%5D)
To find the eigenvalues of A we need find the zeros of the polynomial characteristic 
Then
![p(\lambda)=det(\left[\begin{array}{ccc}-4-\lambda&-4&-4\\0&-8-\lambda&-4\\0&8&4-\lambda\end{array}\right] )\\=(-4-\lambda)det(\left[\begin{array}{cc}-8-\lambda&-4\\8&4-\lambda\end{array}\right] )\\=(-4-\lambda)((-8-\lambda)(4-\lambda)+32)\\=-\lambda^3-8\lambda^2-16\lambda](https://tex.z-dn.net/?f=p%28%5Clambda%29%3Ddet%28%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4-%5Clambda%26-4%26-4%5C%5C0%26-8-%5Clambda%26-4%5C%5C0%268%264-%5Clambda%5Cend%7Barray%7D%5Cright%5D%20%29%5C%5C%3D%28-4-%5Clambda%29det%28%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-8-%5Clambda%26-4%5C%5C8%264-%5Clambda%5Cend%7Barray%7D%5Cright%5D%20%29%5C%5C%3D%28-4-%5Clambda%29%28%28-8-%5Clambda%29%284-%5Clambda%29%2B32%29%5C%5C%3D-%5Clambda%5E3-8%5Clambda%5E2-16%5Clambda)
Now, we fin the zeros of
.

Then, the eigenvalues of A are
of multiplicity 1 and
of multiplicity 2.
Let's find the eigenspaces of A. For
:
.Then, we use row operations to find the echelon form of the matrix
![A=\left[\begin{array}{ccc}-4&-4&-4\\0&-8&-4\\0&8&4\end{array}\right]\rightarrow\left[\begin{array}{ccc}-4&-4&-4\\0&-8&-4\\0&0&0\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%26-4%26-4%5C%5C0%26-8%26-4%5C%5C0%268%264%5Cend%7Barray%7D%5Cright%5D%5Crightarrow%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%26-4%26-4%5C%5C0%26-8%26-4%5C%5C0%260%260%5Cend%7Barray%7D%5Cright%5D)
We use backward substitution and we obtain
1.

2.

Therefore,

For
:
.Then, we use row operations to find the echelon form of the matrix
![A+4I_3=\left[\begin{array}{ccc}0&-4&-4\\0&-4&-4\\0&8&8\end{array}\right] \rightarrow\left[\begin{array}{ccc}0&-4&-4\\0&0&0\\0&0&0\end{array}\right]](https://tex.z-dn.net/?f=A%2B4I_3%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%26-4%26-4%5C%5C0%26-4%26-4%5C%5C0%268%268%5Cend%7Barray%7D%5Cright%5D%20%5Crightarrow%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%26-4%26-4%5C%5C0%260%260%5C%5C0%260%260%5Cend%7Barray%7D%5Cright%5D)
We use backward substitution and we obtain
1.

Then,

Answer:USE GOOGLE
Step-by-step explanation:
I USE IT EVERY DAY