1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kisachek [45]
4 years ago
13

How to solve 14/15- ?= 1/3

Mathematics
1 answer:
Sophie [7]4 years ago
5 0

Answer:

? = 3/5

Step-by-step explanation:

14/15–x = 1/3

14/15–1/3 = x

14/15–5/15 = x

9/15 = x

3/5 = x

You might be interested in
Answer the Follow: P (7 4) P (6 3)
mote1985 [20]

Answer:

Step-by-step explanation:

Using closest Wolfram|Alpha interpretation: P (7 4) P (6 3)

Assuming

"P"

is referring to prime numbers

|

Use as

instead

Input interpretation:

primes | between 28 and P(18)

Values:

2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 (9 primes)

5 0
3 years ago
If anyone can help me with this question thanks!
Vedmedyk [2.9K]
What is it asking for?
6 0
3 years ago
B-2-11. Find the inverse Laplace transform of s + 1/s(s^2 + s +1)
Aleksandr-060686 [28]

Answer:

\mathcal{L}^{-1}\{\frac{s+1}{s(s^{2} + s +1)}\}=1-e^{-t/2}cos(\frac{\sqrt{3} }{2}t )+\frac{e^{-t/2}}{\sqrt{3} }sin(\frac{\sqrt{3} }{2}t)

Step-by-step explanation:

let's start by separating the fraction into two new smaller fractions

.

First,<em> s(s^2+s+1)</em> must be factorized the most, and it is already. Every factor will become the denominator of a new fraction.

\frac{s+1}{s(s^{2} + s +1)}=\frac{A}{s}+\frac{Bs+C}{s^{2}+s+1}

Where <em>A</em>, <em>B</em> and <em>C</em> are unknown constants. The numerator of <em>s</em> is a constant <em>A</em>, because <em>s</em> is linear, the numerator of <em>s^2+s+1</em> is a linear expression <em>Bs+C</em> because <em>s^2+s+1</em> is a quadratic expression.

Multiply both sides by the complete denominator:

[{s(s^{2} + s +1)]\frac{s+1}{s(s^{2} + s +1)}=[\frac{A}{s}+\frac{Bs+C}{s^{2}+s+1}][{s(s^{2} + s +1)]

Simplify, reorganize and compare every coefficient both sides:

s+1=A(s^2 + s +1)+(Bs+C)(s)\\\\s+1=As^{2}+As+A+Bs^{2}+Cs\\\\0s^{2}+1s^{1}+1s^{0}=(A+B)s^{2}+(A+C)s^{1}+As^{0}\\\\0=A+B\\1=A+C\\1=A

Solving the system, we find <em>A=1</em>, <em>B=-1</em>, <em>C=0</em>. Now:

\frac{s+1}{s(s^{2} + s +1)}=\frac{1}{s}+\frac{-1s+0}{s^{2}+s+1}=\frac{1}{s}-\frac{s}{s^{2}+s+1}

Then, we can solve the inverse Laplace transform with simplified expressions:

\mathcal{L}^{-1}\{\frac{s+1}{s(s^{2} + s +1)}\}=\mathcal{L}^{-1}\{\frac{1}{s}-\frac{s}{s^{2}+s+1}\}=\mathcal{L}^{-1}\{\frac{1}{s}\}-\mathcal{L}^{-1}\{\frac{s}{s^{2}+s+1}\}

The first inverse Laplace transform has the formula:

\mathcal{L}^{-1}\{\frac{A}{s}\}=A\\ \\\mathcal{L}^{-1}\{\frac{1}{s}\}=1\\

For:

\mathcal{L}^{-1}\{-\frac{s}{s^{2}+s+1}\}

We have the formulas:

\mathcal{L}^{-1}\{\frac{s-a}{(s-a)^{2}+b^{2}}\}=e^{at}cos(bt)\\\\\mathcal{L}^{-1}\{\frac{b}{(s-a)^{2}+b^{2}}\}=e^{at}sin(bt)

We have to factorize the denominator:

-\frac{s}{s^{2}+s+1}=-\frac{s+1/2-1/2}{(s+1/2)^{2}+3/4}=-\frac{s+1/2}{(s+1/2)^{2}+3/4}+\frac{1/2}{(s+1/2)^{2}+3/4}

It means that:

\mathcal{L}^{-1}\{-\frac{s}{s^{2}+s+1}\}=\mathcal{L}^{-1}\{-\frac{s+1/2}{(s+1/2)^{2}+3/4}+\frac{1/2}{(s+1/2)^{2}+3/4}\}

\mathcal{L}^{-1}\{-\frac{s+1/2}{(s+1/2)^{2}+3/4}\}+\mathcal{L}^{-1}\{\frac{1/2}{(s+1/2)^{2}+3/4}\}\\\\\mathcal{L}^{-1}\{-\frac{s+1/2}{(s+1/2)^{2}+3/4}\}+\frac{1}{2} \mathcal{L}^{-1}\{\frac{1}{(s+1/2)^{2}+3/4}\}

So <em>a=-1/2</em> and <em>b=(√3)/2</em>. Then:

\mathcal{L}^{-1}\{-\frac{s+1/2}{(s+1/2)^{2}+3/4}\}=e^{-\frac{t}{2}}[cos\frac{\sqrt{3}t }{2}]\\\\\\\frac{1}{2}[\frac{2}{\sqrt{3} } ]\mathcal{L}^{-1}\{\frac{\sqrt{3}/2 }{(s+1/2)^{2}+3/4}\}=\frac{1}{\sqrt{3} } e^{-\frac{t}{2}}[sin\frac{\sqrt{3}t }{2}]

Finally:

\mathcal{L}^{-1}\{\frac{s+1}{s(s^{2} + s +1)}\}=1-e^{-t/2}cos(\frac{\sqrt{3} }{2}t )+\frac{e^{-t/2}}{\sqrt{3} }sin(\frac{\sqrt{3} }{2}t)

7 0
4 years ago
Solve for x.<br> 0.3 (12x – 16) = 0.4(12 — 3x)<br> A: 2<br> B: -4<br> C: 4<br> D: -2
Sunny_sXe [5.5K]

Answer:

Step-by-step explanation:

the answer is 2 if you go to the website www.tiger-algerbra.com>drill>0.3(12x-16)=0.4(12-3x)

8 0
3 years ago
Calcule le PGCD de 231 et 561 à l'aide de la méthode des soustractions successives.
masya89 [10]

Answer:

GCD = 33

Step-by-step explanation:

désolé si ce n'est pas correct

7 0
3 years ago
Read 2 more answers
Other questions:
  • The following data shows the scores Gina obtained on 12 IQ tests:93, 83, 74, 74, 83, 92, 93, 94, 90, 87, 83, 86The box plot belo
    9·2 answers
  • 98 points reward HELP!!!!
    15·2 answers
  • A piggy bank contains nickels and dimes. There are 160 total coins valuing $10.50. Think about a system of equations that can be
    10·2 answers
  • 1,258 rounded to rhe nearest thousand is
    14·2 answers
  • Can 3/10 be simplified?
    8·2 answers
  • What is 2/3+1/6= in a fraction plz
    11·1 answer
  • Given: AB ≅ CD
    5·1 answer
  • A rotation of a figure can be achieved by consecutive ___ of the figure over given lines
    6·1 answer
  • Write the point-slope form of the line that passes through (5,5) and is parallel to a line with a slope of 1/4 include all of yo
    14·1 answer
  • A submarine was situated 800 feet below sea level. If it ascends 250 feet, what is its new position? -ayudaxdd
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!