Answer with explanation:
The given parametric equation in , t ,
x = 3 t, y=t²
![t=\frac{x}{3}\\\\t^2=[\frac{x}{3}]^2\\\\y=\frac{x^2}{9}\rightarrow x^2=9 y](https://tex.z-dn.net/?f=t%3D%5Cfrac%7Bx%7D%7B3%7D%5C%5C%5C%5Ct%5E2%3D%5B%5Cfrac%7Bx%7D%7B3%7D%5D%5E2%5C%5C%5C%5Cy%3D%5Cfrac%7Bx%5E2%7D%7B9%7D%5Crightarrow%20x%5E2%3D9%20y)
,represents the curve parabola, having Axis in positive Direction of ,Y axis.
⇒⇒For, t=0
x=0, y=0
for, t=1
x=3, y=1
for, t=2
x=6, y=4
.............
...............
we will get different set of ordered pairs for different integral values of t.
Vertex =(0,0)
Axis (Orientation): Y axis.
Focus: Comparing with general equation of parabola , x²=4 a y,gives focus
![\rightarrow4 a=9\\\\a=\frac{9}{4}\\\\\text{focus}=(0,\frac{9}{4})](https://tex.z-dn.net/?f=%5Crightarrow4%20a%3D9%5C%5C%5C%5Ca%3D%5Cfrac%7B9%7D%7B4%7D%5C%5C%5C%5C%5Ctext%7Bfocus%7D%3D%280%2C%5Cfrac%7B9%7D%7B4%7D%29)
Equation of Directrix:
![y=\frac{-9}{4}](https://tex.z-dn.net/?f=y%3D%5Cfrac%7B-9%7D%7B4%7D)