Determine which value is equivalent to | f ( i ) | if the function is: f ( x ) = 1 - x. We know that for the complex number: z = a + b i , the absolute value is: | z | = sqrt( a^2 + b^2 ). In this case: | f ( i )| = | 1 - i |. So: a = 1, b = - 1. | f ( i ) | = sqrt ( 1^2 + ( - 1 )^2) = sqrt ( 1 + 1 ) = sqrt ( 2 ). ANSWER IS C. sqrt( 2 )
Assign the following variables for the origina3l rectangle:
let w = width let w + 8 = length and the area would be w(w + 8) = w² + 8w
No for the second rectangle:
let (w + 4) = width and (w + 8 - 5) or (w + 3) = length
Area = length x width or (w + 4)(w + 3) = w² + 3w + 4w + 12 using the foil method to multiply to binomials. Simplified Area = w² + 7w + 12
Now our problem says that the two area will be equal to each other, which sets up the following equation:
w² + 8w = w² + 7w + 12 subtract w² from both sides
8w = 7w + 12 subtract 7w from both sides
w = 12 this is the width of our original rectangle
recall w + 8 = length, so length of the original rectangle would be 20
Answer:
9.5
Step-by-step explanation:
Answer:
b.0.65
Step-by-step explanation:
i think it is I'm sorry if it's not
Notice this is a geometric progression since each number multiplied by some factor equals the next number in the sequence, in this case,

Then by applying the formula for sum to infinity of a geometric progression,