Answer:
Step-by-step explanation:
In finding the COMMON DIFFERENCE, subtract the 2nd term and the first term.
a1 = -4
a2 = -2
Let "d" representing the COMMON DIFFERENCE.
d = -2 -(-4)
d = -2 + 4
d = 2
ANSWER:
THE COMMON DIFFERENCE OF THIS SEQUENCE IS 2
Answer:
Explanation:
Identity: sec2θ=1+tan2θ
sec2(π2−x)−1=1+tan2(π2−x)−1
=tan2(π2−x)
Identity: tan(π2−θ)=cotθ
=cot2x
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Reading a Cartesian plane
- Coordinates (x, y)
- Slope Formula:

Step-by-step explanation:
<u>Step 1: Define</u>
<em>Find points from graph.</em>
Point (3, 1)
Point (0, 3)
<u>Step 2: Find slope </u><em><u>m</u></em>
Simply plug in the 2 coordinates into the slope formula to find slope <em>m</em>
- Substitute in points [Slope Formula]:

- [Fraction] Subtract:

- [Fraction] Rewrite:

-x+y=3
y=x+3
2x + x + 3 =6
3x + 3 = 6
3x = 3
x = 1
-1 + y = 3
y = 4
2(1) + y = 6
2 + y = 6
y = 4
Solution: (1, 4)
Answer:
a) (i)
, (ii)
, (iii)
, (iv)
, (v)
, (vi)
, (vii)
, (viii)
; b)
; c) The equation of the tangent line to curve at P (7, -2) is
.
Step-by-step explanation:
a) The slope of the secant line PQ is represented by the following definition of slope:

(i)
:




(ii) 




(iii) 




(iv) 




(v) 




(vi) 




(vii) 




(viii) 




b) The slope at P (7,-2) can be estimated by using the following average:



The slope of the tangent line to the curve at P(7, -2) is 2.
c) The equation of the tangent line is a first-order polynomial with the following characteristics:

Where:
- Independent variable.
- Depedent variable.
- Slope.
- x-Intercept.
The slope was found in point (b) (m = 2). Besides, the point of tangency (7,-2) is known and value of x-Intercept can be obtained after clearing the respective variable:



The equation of the tangent line to curve at P (7, -2) is
.