Answer:
B. 7.07 m/s
Explanation:
The velocity of the stone when it leaves the circular path is its tangential velocity,
, which is given by

where
is the angular speed and
is the radius of the circular path.
is given by

where
is the frequency of revolution.
Thus

Using values from the question,

<em>Note the conversion of 75 cm to 0.75 m</em>

Answer:
276.5 m/s^2
Explanation:
The initial angular velocity of the turbine is

The length of the blade is
r = 17.9 m
So the centripetal acceleration is given by

At the instant t = 0,

So the centripetal acceleration of the tip of the blades is

The answer is “D. all of the above”!
Metal from the paper clip is attracted to the magnet, so it will naturally move toward and stick to the magnet. This will cause the paper clip to temporarily become a magnet for other metals. I hope this helped!
Answer:
Wn = 9.14 x 10¹⁷ N
Explanation:
First we need to find our mass. For this purpose we use the following formula:
W = mg
m = W/g
where,
W = Weight = 675 N
g = Acceleration due to gravity on Surface of Earth = 9.8 m/s²
m = Mass = ?
Therefore,
m = (675 N)/(9.8 m/s²)
m = 68.88 kg
Now, we need to find the value of acceleration due to gravity on the surface of Neutron Star. For this purpose we use the following formula:
gn = (G)(Mn)/(Rn)²
where,
gn = acceleration due to gravity on surface of neutron star = ?
G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²
Mn = Mass of Neutron Star = Mass of Sun = 1.99 x 10³⁰ kg
Rn = Radius of neutron Star = 20 km/2 = 10 km = 10000 m
Therefore,
gn = (6.67 x 10⁻¹¹ N.m²/kg²)(1.99 x 10³⁰ kg)/(10000)
gn = 13.27 x 10¹⁵ m/s²
Now, my weight on neutron star will be:
Wn = m(gn)
Wn = (68.88)(13.27 x 10¹⁵ m/s²)
<u>Wn = 9.14 x 10¹⁷ N</u>