Answer:
13.2m
Explanation:
Step one:
given data
Energy= 5610J
Force F= 425N
Required
The distance traveled
Step two:
We know that work done is given as
WD= force* distance
so
5610=425*d
divide both sides by 425
d= 5610/425
d=13.2m
Answer:
t₂ = 3.89 s
Explanation:
given,
speed of car = 23 m/s
speed of motorcycle = 23 m/s
after time of 4 s distance between them is equal to = 53 m
motorcycle accelerates at = 7 m/s
time taken to catch up with car = ?
let t₂ be the time in which motorcycle catches car.
distance traveled by car in t₂ s
d = 23 t₂ + 53
distance traveled by motorcycle
using equation of motion


now, equating both the distances


t₂ = 3.89 s
time taken by the motorcycle to catch the car is equal to 3.89 s
solution:
radius of steel ball(r)=5cm=0.05m
density of ball =8000kgm
terminal velocity(v)=25m/s^2
density of air( d) =1.29 kgm
now
volume of ball(V)=4/3pir^3=1.33×3.14×0.05^3=0.00052 m^3
density of ball= mass of ball/Volume of ball
or, 8000=m/0.00052
or, m=4.16 kg
weight of the ball (W)= mg=4.16×10=41.6 N
viscous force(F)=6 × pi × eta × r × v
=6×3.14×eta×0.05×25
=23.55×eta
To attain the terminal velocity,
Fiscous force=Weight
or, 23.55× eta = 41.6
or, eta = 1.76
whete eta is the coefficient of viscosity.
This question involves the concepts of the law of conservation of energy and kinetic energy.
The girl's fastest speed is "3.7 m/s".
According to the law of conservation of energy, the girl will have the fastest speed at mean position, which will be calculated as follows:
Loss in Potential Energy = Gain in Kinetic Energy

where,
v = maximum speed = ?
g = acceleration due to gravity = 9.81 m/s²
Δh = change in height = 1.3 m - 0.6 m = 0.7 m
Therefore,

<u>v = 3.7 m/s</u>
<u></u>
Learn more about the Law of Conservation of Energy here:
brainly.com/question/381281?referrer=searchResults