Hope this helped. :)
Any point, <span><span>(<span><span>x0</span>,<span>y0</span></span>)</span><span>(<span><span>x0</span>,<span>y0</span></span>)</span></span> on the parabola satisfies the definition of parabola, so there are two distances to calculate:
<span>Distance between the point on the parabola to the focusDistance between the point on the parabola to the directrix</span>
To find the equation of the parabola, equate these two expressions and solve for <span><span>y0</span><span>y0</span></span> .
Find the equation of the parabola in the example above.
Distance between the point <span><span>(<span><span>x0</span>,<span>y0</span></span>)</span><span>(<span><span>x0</span>,<span>y0</span></span>)</span></span> and <span><span>(<span>a,b</span>)</span><span>(<span>a,b</span>)</span></span> :
<span><span><span><span><span>(<span><span>x0</span>−a</span>)</span>2</span>+<span><span>(<span><span>y0</span>−b</span>)</span>2</span></span><span>‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾</span>√</span><span><span><span>(<span><span>x0</span>−a</span>)</span>2</span>+<span><span>(<span><span>y0</span>−b</span>)</span>2</span></span></span>
Distance between point <span><span>(<span><span>x0</span>,<span>y0</span></span>)</span><span>(<span><span>x0</span>,<span>y0</span></span>)</span></span> and the line <span><span>y=c</span><span>y=c</span></span> :
<span><span><span>∣∣</span><span><span>y0</span>−c</span><span>∣∣</span></span><span>| <span><span>y0</span>−c</span> |</span></span>
(Here, the distance between the point and horizontal line is difference of their <span>yy</span> -coordinates.)
Equate the two expressions.
<span><span><span><span><span><span>(<span><span>x0</span>−a</span>)</span>2</span>+<span><span>(<span><span>y0</span>−b</span>)</span>2</span></span><span>‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾</span>√</span>=<span><span>∣∣</span><span><span>y0</span>−c</span><span>∣∣</span></span></span><span><span><span><span>(<span><span>x0</span>−a</span>)</span>2</span>+<span><span>(<span><span>y0</span>−b</span>)</span>2</span></span>=<span>| <span><span>y0</span>−c</span> |</span></span></span>
Square both sides.
<span><span><span><span>(<span><span>x0</span>−a</span>)</span>2</span>+<span><span>(<span><span>y0</span>−b</span>)</span>2</span>=<span><span>(<span><span>y0</span>−c</span>)</span>2</span></span><span><span><span>(<span><span>x0</span>−a</span>)</span>2</span>+<span><span>(<span><span>y0</span>−b</span>)</span>2</span>=<span><span>(<span><span>y0</span>−c</span>)</span>2</span></span></span>
Expand the expression in <span><span>y0</span><span>y0</span></span> on both sides and simplify.
<span><span><span><span>(<span><span>x0</span>−a</span>)</span>2</span>+<span>b2</span>−<span>c2</span>=2<span>(<span>b−c</span>)</span><span>y0</span></span><span><span><span>(<span><span>x0</span>−a</span>)</span>2</span>+<span>b2</span>−<span>c2</span>=2<span>(<span>b−c</span>)</span><span>y0</span></span></span>
This equation in <span><span>(<span><span>x0</span>,<span>y0</span></span>)</span><span>(<span><span>x0</span>,<span>y0</span></span>)</span></span> is true for all other values on the parabola and hence we can rewrite with <span><span>(<span>x,y</span>)</span><span>(<span>x,y</span>)</span></span> .
Therefore, the equation of the parabola with focus <span><span>(<span>a,b</span>)</span><span>(<span>a,b</span>)</span></span> and directrix <span><span>y=c</span><span>y=c</span></span> is
<span><span><span><span>(<span>x−a</span>)</span>2</span>+<span>b2</span>−<span>c2</span>=2<span>(<span>b−c</span>)</span>y</span></span>