Answer:
x=3−2d,5,−2(1+d),5,−27−2d,5,−2(2+d),5,2(y−d),5
Step-by-step explanation:Solving for x. Want to solve for y or solve for d instead?
1 Simplify 0-20−2 to -2−2.
3,-2,-27,-2-2,02y=1,5x+2d3,−2,−27,−2−2,02y=1,5x+2d
2 Simplify -2-2−2−2 to -4−4.
3,-2,-27,-4,02y=1,5x+2d3,−2,−27,−4,02y=1,5x+2d
3 Subtract 2d2d from both sides.
3-2d,-2-2d,-27-2d,-4-2d,02y-2d=1,5x3−2d,−2−2d,−27−2d,−4−2d,02y−2d=1,5x
4 Divide both sides by 1,51,5.
\frac{3-2d}{1},5,\frac{-2-2d}{1},5,\frac{-27-2d}{1},5,\frac{-4-2d}{1},5,\frac{02y-2d}{1},5=x
1
3−2d
,5,
1
−2−2d
,5,
1
−27−2d
,5,
1
−4−2d
,5,
1
02y−2d
,5=x
5 Factor out the common term 22.
\frac{3-2d}{1},5,\frac{-2(1+d)}{1},5,\frac{-27-2d}{1},5,\frac{-4-2d}{1},5,\frac{02y-2d}{1},5=x
1
3−2d
,5,
1
−2(1+d)
,5,
1
−27−2d
,5,
1
−4−2d
,5,
1
02y−2d
,5=x
6 Factor out the common term 22.
\frac{3-2d}{1},5,\frac{-2(1+d)}{1},5,\frac{-27-2d}{1},5,\frac{-2(2+d)}{1},5,\frac{02y-2d}{1},5=x
1
3−2d
,5,
1
−2(1+d)
,5,
1
−27−2d
,5,
1
−2(2+d)
,5,
1
02y−2d
,5=x
7 Factor out the common term 22.
\frac{3-2d}{1},5,\frac{-2(1+d)}{1},5,\frac{-27-2d}{1},5,\frac{-2(2+d)}{1},5,\frac{2(y-d)}{1},5=x
1
3−2d
,5,
1
−2(1+d)
,5,
1
−27−2d
,5,
1
−2(2+d)
,5,
1
2(y−d)
,5=x
8 Simplify \frac{3-2d}{1}
1
3−2d
to (3-2d)(3−2d).
3-2d,5,\frac{-2(1+d)}{1},5,\frac{-27-2d}{1},5,\frac{-2(2+d)}{1},5,\frac{2(y-d)}{1},5=x3−2d,5,
1
−2(1+d)
,5,
1
−27−2d
,5,
1
−2(2+d)
,5,
1
2(y−d)
,5=x
9 Simplify \frac{-2(1+d)}{1}
1
−2(1+d)
to (-2(1+d))(−2(1+d)).
3-2d,5,-2(1+d),5,\frac{-27-2d}{1},5,\frac{-2(2+d)}{1},5,\frac{2(y-d)}{1},5=x3−2d,5,−2(1+d),5,
1
−27−2d
,5,
1
−2(2+d)
,5,
1
2(y−d)
,5=x
10 Simplify \frac{-27-2d}{1}
1
−27−2d
to (-27-2d)(−27−2d).
3-2d,5,-2(1+d),5,-27-2d,5,\frac{-2(2+d)}{1},5,\frac{2(y-d)}{1},5=x3−2d,5,−2(1+d),5,−27−2d,5,
1
−2(2+d)
,5,
1
2(y−d)
,5=x
11 Simplify \frac{-2(2+d)}{1}
1
−2(2+d)
to (-2(2+d))(−2(2+d)).
3-2d,5,-2(1+d),5,-27-2d,5,-2(2+d),5,\frac{2(y-d)}{1},5=x3−2d,5,−2(1+d),5,−27−2d,5,−2(2+d),5,
1
2(y−d)
,5=x
12 Simplify \frac{2(y-d)}{1}
1
2(y−d)
to (2(y-d))(2(y−d)).
3-2d,5,-2(1+d),5,-27-2d,5,-2(2+d),5,2(y-d),5=x3−2d,5,−2(1+d),5,−27−2d,5,−2(2+d),5,2(y−d),5=x
13 Switch sides.
x=3-2d,5,-2(1+d),5,-27-2d,5,-2(2+d),5,2(y-d),5x=3−2d,5,−2(1+d),5,−27−2d,5,−2(2+d),5,2(y−d),5
Done