A=Pe^rt
P=principal(starting)
E= function on calculator
r= rate
T= time (how long)
Answer:
Part A) For the number of hours less than 5 hours it make more sense to rent a scooter from Rosie's
Part B) For the number of hours greater than 5 hours it make more sense to rent a scooter from Sam's
Part C) Yes, for the number of hours equal to 5 the cost of Sam'scooters is equal to the cost of Rosie's scooters
Part D) The cost is $90
Step-by-step explanation:
Let
x-------> the number of hours (independent variable)
y-----> the total cost of rent scooters (dependent variable)
we know that
Sam's scooters
Rosie's scooters
using a graphing tool
see the attached figure
A. when does it make more sense to rent a scooter from Rosie's? How do you know?
For the number of hours less than 5 hours it make more sense to rent a scooter from Rosie's (see the attached figure) because the cost in less than Sam' scooters
B. when does it make more sense to rent a scooter from Sam's? How do you know?
For the number of hours greater than 5 hours it make more sense to rent a scooter from Sam's (see the attached figure) because the cost in less than Rosie' scooters
C. Is there ever a time where it wouldn't matter which store to choose?
Yes, for the number of hours equal to 5 the cost of Sam'scooters is equal to the cost of Rosie's scooters. The cost is $70 (see the graph)
D. If you were renting a scooter from Rosie's, how much would you pay if you were planning on renting for 7 hours?
Rosie's scooters

For x=7 hours
substitute

The cost is $90
Answer:
3.5 X 10^4 < 2.1 x 10^6
Step-by-step explanation:
3.5 X 10^4 < 2.1 x 10^6
The first thing we look at is the exponent
10 ^4 is less than 10^6
10000 < 1000000
If the exponents are the same, then we look at the numbers out front
No need to fear, thehotdogman93 is here!
The first step is to get rid of those very large numbers. It's going to be very difficult to factor unless we can bring those high numbers down. So lets see if we can factor each term.
So after dividing 49 with every single digit. The only number that divides evenly is 7 and one, and 16 isnt divisible evenly by 7 so that didn't work. Looks like we're gonna have to work with these big numbers.
There is something interesting though about these numbers. 16 and 49 are both perfect squares. 16 is the same as 4^2 and 49 is the same as 7^2. So we can factor the whole trinomial as:

If we were to expand this out as:

and multiply it back into the original form. It would match with the expression we started with. The 4's would multiply back into 16x^2 and the 7's would multiply back into 49.
Additionally 4 * -7 is -28, so you can combine two -28x's into the -56x term in the original trinomial.
Thus, the answer is yes you can, and the answer is:
