<span>The boat applying a force on the person pushing her forward.
</span>
Hope this helps!
Answer:
Force must be applied to m₁ to move the group of rocks from the road at 0.250 m/s² = 436 N
Explanation:
Total force required = Mass x Acceleration,
F = ma
Here we need to consider the system as combine, total mass need to be considered.
Total mass, a = m₁+m₂+m₃ = 584 + 838 + 322 = 1744 kg
We need to accelerate the group of rocks from the road at 0.250 m/s²
That is acceleration, a = 0.250 m/s²
Force required, F = ma = 1744 x 0.25 = 436 N
Force must be applied to m₁ to move the group of rocks from the road at 0.250 m/s² = 436 N
Answer:
F = m X a
Therefore ,
Force required = 50 X 30 = 1500 newton
Answer:
Eleven seconds.
Explanation:
Two keys are needed to solve this problem. First, the conservation of momentum: allowing you to calculate the cart's speed after the elephant jumped onto it. It holds that:

So, once loaded with an elephant, the cart was moving with a speed of 4.29m/s.
The second key is the kinematic equation for accelerated motion. There is one force acting on the cart, namely friction. The friction acts in the opposite direction to the horizontal direction of the velocity v0, its magnitude and the corresponding deceleration are:

The kinematic equation describing the decelerated motion is:

It takes 11 seconds for the comical elephant-cart system to come to a halt.
Answer:
3 per 10 seconds.
Explanation:
If it's 30 seconds and 3 waves hit throughout that time period, dividing should get you your answer..
30/3 = 10.
Hope this helped!
Source(s) used: N/A