Answer:
5.3 m/s
Explanation:
First, find the time it takes for him to fall 7m.
y = y₀ + v₀ t + ½ at²
0 = 7 + (0) t + ½ (-9.8) t²
0 = 7 − 4.9 t²
t ≈ 1.20 s
Now find the velocity he needs to travel 6.3m in that time.
x = x₀ + v₀ t + ½ at²
6.3 = 0 + v₀ (1.20) + ½ (0) (1.20)²
v₀ ≈ 5.27 m/s
Rounded to two significant figures, the man must run with a speed of 5.3 m/s.
Answer:
Using the given values
F = K q^2 / r^2 = 9 * 10E9 * (1.6 * E-19)^2 / (5.18 * E-15)^2 N
E = 9 * 1.6^2 / 5.18^2 * 10 = 8.5 N
Answer:
lambda = 343 m/s divided by 340 Hz = 1.009 seconds
Hope it helps and have a wonderful day!
A car has a mass of 900 kg and a truck has a mass of 1800 kg. In which of the following situations would they have the same momentum?A car has a mass of 900 kg and a truck has a mass of 1800 kg. In which of the following situations would they have the same momentum?
Given parameters:
First velocity = 2.50m/s
Time of travel = 3s
Second velocity = 1.50m/s
Unknown:
The displacement during the first interval = ?
Velocity is the displacement of a body with time. Displacement is a distance move in a specific direction by a body.
Velocity = 
So;
Displacement = Velocity x Time taken
Now input the parameter for the first velocity and time of travel;
Displacement = 2.5 x 3 = 7.5m
The displacement id 7.5m