Answer:
The ratio of the escape velocity to the orbital velocity is
.
Explanation:
The minimum velocity given to an object so that it escapes from the earth's gravitational pull is called escape velocity.
The formula of the escape velocity is

The velocity of an object in the orbit around the earth is called orbital velocity.
The formula of the orbital velocity is

The ratio of the escape velocity to the orbital velocity is
The final velocity of the passenger is zero as he is brought to rest by the inflated bag.

Apply the equation of motion

Replacing with our values,



Calculate the force using the force equation,



Therefore the magnitude of force acts on the passenger's upper torso is 34.923kN
Answer:
Kf= 36 J
W(net) = 32 J
Explanation:
Given that
m = 2 kg
F= 4 N
t= 2 s
Initial velocity ,u= 2 m/s
We know that rate of change of linear momentum is called force.
F= dP/dt
F.t = ΔP
ΔP = Pf - Pi
ΔP = m v - m u
v= Final velocity
By putting the values
4 x 2 = 2 ( v - 2)
8 = 2 ( v - 2)
4 = v - 2
v= 6 m/s
The final kinetic energy Kf
Kf= 1/2 m v²
Kf= 0.5 x 2 x 6²
Kf= 36 J
Initial kinetic energy Ki
Ki = 1/2 m u²
Ki= 0.5 x 2 x 2²
Ki = 4 J
We know that net work is equal to the change in kinetic energy
W(net) = Kf - Ki
W(net) = 36 - 4
W(net) = 32 J
According to Archimede's principle, a physical object experiences an upthrust due to a difference in pressure between upper and lower surfaces.
<h3>What is an
upthrust?</h3>
An upthrust is also referred to as buoyancy and it can be defined as an upward force which is exerted by a fluid (liquid or gas), so as to oppose the weight of a partially or fully immersed physical object that is floating in it.
Based on scientific information, a physical object experiences an upthrust when it is immersed in a fluid due to a difference in height and pressure between upper (top) and lower (bottom) surfaces.
According to Archimede's principle, there is a higher pressure at the bottom of the physical object due to height, and a lower pressure at the top of the physical object.
Read more on upthrust here: brainly.com/question/24389514
#SPJ1
The surge protector doesn't use energy. The current that carries Energy may pass through it but a good surge protector won't consume any of that energy. It'll just pass through the surge protector. The current that carrys the energy passes through it to be used by devices further on down the line, such as a toaster or a welder. If those devices are using 1.8 kilowatts of power, then that means that 6,480,000 Joules of energy pass through the surge protector in one hour. They all come out the other end and keep going.