Answer:
a) Q(-2,1) is false
b) Q(-5,2) is false
c)Q(3,8) is true
d)Q(9,10) is true
Step-by-step explanation:
Given data is
is predicate that
then
. where
are rational numbers.
a)
when 
Here
that is
satisfied. Then

this is wrong. since 
That is 
Thus
is false.
b)
Assume
.
That is 
Here
that is
this condition is satisfied.
Then

this is not true. since
.
This is similar to the truth value of part (a).
Since in both
satisfied and
for both the points.
c)
if
that is
and
Here
this satisfies the condition
.
Then 
This also satisfies the condition
.
Hence
exists and it is true.
d)
Assume 
Here
satisfies the condition 
Then 
satisfies the condition
.
Thus,
point exists and it is true. This satisfies the same values as in part (c)
The three points A,B,C are all points on this circle.
Each point is then equal distance from the center, that distance being the radius of the circle.
Using the distance formula, we can find the center of the circle (x,y):

Plugging in points A and B into distance formula, then setting them equal to each other gives:

Right away we can cancel out the x terms leaving:

Expand Left side and Solve for y:


Plug in points B and C as before:

Here we can cancel the y-terms.
Expand and solve for x:



Therefore the center of the circle is the point (6,3)
Answer:

Step-by-step explanation:


taking like terms together

taking LCM


taking LCM

splitting the term

splitting the term



we know that

putting this value in above equation

-5(-2f-6)
distribute by multiplying -5 by everything inside the parenthesis
-5 * -2f = 10f
-5 *-6 = 30
so you get 10f+30