Answer:
The possible parking lengths are 45.96 feet and 174.031 feet
Step-by-step explanation:
Let x be the length of rectangular plot and y be the breadth of rectangular plot
A rectangular parking lot must have a perimeter of 440 feet
Perimeter of rectangular plot =2(l+b)=2(x+y)=440
2(x+y)=440
x+y=220
y=220-x
We are also given that an area of at least 8000 square feet.
So, 
So,

So,
General quadratic equation : 
Formula : 

So, The possible parking lengths are 45.96 feet and 174.031 feet
1300+22=1322 1322+6=1328 answer: 1328
![\bf \qquad \qquad \textit{direct proportional variation} \\\\ \textit{\underline{y} varies directly with \underline{x}}\qquad \qquad y=kx\impliedby \begin{array}{llll} k=constant\ of\\ \qquad variation \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ y = 4\frac{2}{3}x\qquad \qquad yes\qquad \checkmark\qquad \qquad k = 4\frac{2}{3} \\\\[-0.35em] ~\dotfill\\\\ y=3(x-1)\implies \stackrel{\textit{distributing}}{y=3x-3}\qquad \qquad yes\qquad \checkmark \qquad \qquad k=3](https://tex.z-dn.net/?f=%5Cbf%20%5Cqquad%20%5Cqquad%20%5Ctextit%7Bdirect%20proportional%20variation%7D%20%5C%5C%5C%5C%20%5Ctextit%7B%5Cunderline%7By%7D%20varies%20directly%20with%20%5Cunderline%7Bx%7D%7D%5Cqquad%20%5Cqquad%20y%3Dkx%5Cimpliedby%20%5Cbegin%7Barray%7D%7Bllll%7D%20k%3Dconstant%5C%20of%5C%5C%20%5Cqquad%20variation%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20y%20%3D%204%5Cfrac%7B2%7D%7B3%7Dx%5Cqquad%20%5Cqquad%20yes%5Cqquad%20%5Ccheckmark%5Cqquad%20%5Cqquad%20k%20%3D%204%5Cfrac%7B2%7D%7B3%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20y%3D3%28x-1%29%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bdistributing%7D%7D%7By%3D3x-3%7D%5Cqquad%20%5Cqquad%20yes%5Cqquad%20%5Ccheckmark%20%5Cqquad%20%5Cqquad%20k%3D3)
bear in mind that, direct proportional equations have a y-intercept.
for y = kx, is pretty much y = kx + 0, where 0 = y-intercept.
and the "k" constant of proportionality, is pretty much just its slope.
Answer:
10m
hope this helped you alot
Answer:
d. The common ratio is 1.1
Step-by-step explanation:
To see if the data has a common ratio or common difference, we have to see if the division between them is equal(common ratio), or if the difference between them is equal(common difference).
In this case, since
, it has a common ratio.
To find it, we divide consecutive terms. For example:

So the correct answer is:
d. The common ratio is 1.1