Given:
Square pyramid with lateral faces.
646 ft wide at the base.
350 ft high.
Because of the term lateral faces, we need to get the lateral area of the square pyramid.
Lateral Area = a √a² + 4 h² ; a = 646 ft ; h = 350 ft
L.A. = 646 ft √(646ft)² + 4 (350ft)²
L.A. = 646 ft √417,316 ft² + 4 (122,500 ft²)
L.A. = 646 ft √417,316 ft² + 490,000 ft²
L.A. = 646 ft √907,316 ft²
L.A. = 646 ft * 952.53 ft
L.A. = 615,334.38 ft²
Zero commutative<span>property of multiplication. </span>The zero commutative property of multiplication states that when any number is multiplied by 0 the result is always zero
Answer: Greater than
Step-by-step explanation: 0.012 is 12 hundreths
0.12 is 12 tenths
150+3p
p=30
150+3(30)
150+90
240
When p=30 in 150+3p, the final value is 240.
Answer:
1395in^3
Step-by-step explanation:
First find the volume of the cuboid, 15in x 9in x 7in = 945in^3
Then find the volume of the rectangular pyramid using the formula V=lwh/3, the total height is 17in so subtract the height of the cuboid from the total height, giving you 10in.
V=(15in)(9in)(10in)/3 = 450in^3
450in^3 + 945in^3 = 1395in^3