Answer:
331
Step-by-step explanation:
Add 74 + 46 + 57 = 177
Add 9 + 36 = 45
Add 45 + 46 = 91
The distance to the top of the building above the range finder can be found from the Pythagorean theorem.
.. d = √(115² -89²) ≈ 72.8 . . . . feet
Adding the height of the range finder, we find the height of the building to be
.. h = d+3 = 75.8 ft
Answer:
$17,771.92
Step-by-step explanation:
A = P (1 + r/n)^nt
A = Future value (the answer you're trying to find)
P = Initial deposit ($1000)
R = Interest rate (8.25%; this will be represented as a decimal in the equation (.0825))
N = # of times interest is compounded per unit t (12)
T = Time (35)
35 * 12 = 420
1000 (1 + .0825/12)^420
1000(1.006875)^420
1000*17.77191635
A = $17,771.92 (rounded to the nearest hundredths)
Answer:20π
Step-by-step explanation:
equation of the circle
(x+3)² + (y-5)² = r²
now, (-9, -3) lies on it
So, (-9+3)² + (-3-5)² =r²
36+ 64 = r² =100
hence, r =10
So, circumference = 2πr = 20π
hello
the question here is
![3\sqrt[]{7}(14-4\sqrt[]{56})](https://tex.z-dn.net/?f=3%5Csqrt%5B%5D%7B7%7D%2814-4%5Csqrt%5B%5D%7B56%7D%29)
step 1
multiply through the bracket by the coeffiecient
![\begin{gathered} 3\sqrt[]{7}(14-4\sqrt[]{56}) \\ (3\sqrt[]{7}\times14)-(3\sqrt[]{7}\times4\sqrt[]{56}) \\ (14\times3\sqrt[]{7})-3\sqrt[]{7}\times4\sqrt[]{4\times14} \\ (42\sqrt[]{7})-3\sqrt[]{7}\times8\sqrt[]{14} \\ (42\sqrt[]{7})-\lbrack(3\times8)\sqrt[]{7\times14} \\ 42\sqrt[]{7}-24\sqrt[]{98} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%203%5Csqrt%5B%5D%7B7%7D%2814-4%5Csqrt%5B%5D%7B56%7D%29%20%5C%5C%20%283%5Csqrt%5B%5D%7B7%7D%5Ctimes14%29-%283%5Csqrt%5B%5D%7B7%7D%5Ctimes4%5Csqrt%5B%5D%7B56%7D%29%20%5C%5C%20%2814%5Ctimes3%5Csqrt%5B%5D%7B7%7D%29-3%5Csqrt%5B%5D%7B7%7D%5Ctimes4%5Csqrt%5B%5D%7B4%5Ctimes14%7D%20%5C%5C%20%2842%5Csqrt%5B%5D%7B7%7D%29-3%5Csqrt%5B%5D%7B7%7D%5Ctimes8%5Csqrt%5B%5D%7B14%7D%20%5C%5C%20%2842%5Csqrt%5B%5D%7B7%7D%29-%5Clbrack%283%5Ctimes8%29%5Csqrt%5B%5D%7B7%5Ctimes14%7D%20%5C%5C%2042%5Csqrt%5B%5D%7B7%7D-24%5Csqrt%5B%5D%7B98%7D%20%5Cend%7Bgathered%7D)