Answer: The cost of one rose bush is $7 and the cost of one shrub is also $7
Step-by-step explanation:
The situtation can be represented by the systems of the equations.
10x + 4y = 98 x in this case is the cost of one rose bushes
9x + 9y = 126 y is the cost of one shrub.
Solve the system of equation using the elimination method.
10x +4y = 98
9x + 9y = 126 eliminate the y variable so you will have to multiply 9 on top and -4 down.
9(10x +4) = (98)(9)
-4(9x + 9y) = 126(-4)
You will now have the new two systems of equations
90x +36y = 882
-36x +-36y = -504 Now add the equations
0 + 54x = 378
54x = 378
x= 7
Now we know that the cost of one rose bush is 7 so we will plot it into one of the equations and solve for the cost of one shrub.
90(7) +36y=882
630 +36y = 882
-630 -630
36y = 252
y = 7
Check: 10(7) + 4(7)= 98
70 + 28 = 98
98= 98
so one rose bush is actually 7 dollars the same as 1 shrub.
It takes 10 weeks for them to be the same weight
Answer:
Step-by-step explanation:
1. When rotating a point 90 degrees counterclockwise about the origin our point A(x,y) becomes A'(-y,x). In other words, switch x and y and make y negative.
2. The rule for a rotation by 180° about the origin is (x,y)→(−x,−y) .
3. Rotation of a point through 180°, about the origin when a point M (h, k) is rotated about the origin O through 180° in anticlockwise or clockwise direction, it takes the new position M' (-h, -k). ...
Answer:
47
Step-by-step explanation:
Plug the numbers in and solve
5 ^ 2 + 2 ( 5 + 6 )
25 + 22
47
also plz mark me brainiest
Answer:
We conclude that the set of numbers x satisfying -7 ≤ x ≤ 4 is an interval that contains -7, 4, and all numbers in between.
Thus, the domain of g is: -7 ≤ x ≤ 4
Step-by-step explanation:
We know that the domain of a function is the set of inputs or argument values for which the function is defined.
From the given graph, it is cleared that the function g starts from the x-value x = -7 and ends at x = 4.
It means the function is defined for the set of input values from x = -7 to x = 5 for which the function is defined.
Therefore, we conclude that the set of numbers x satisfying -7 ≤ x ≤ 4 is an interval that contains -7, 4, and all numbers in between.
Thus, the domain of g is: -7 ≤ x ≤ 4