Angle BAC is 75 because you subtract 27 from 102.
Answer:
-16
Step-by-step explanation:
Answer:
1250 m²
Step-by-step explanation:
Let x and y denote the sides of the rectangular research plot.
Thus, area is;
A = xy
Now, we are told that end of the plot already has an erected wall. This means we are left with 3 sides to work with.
Thus, if y is the erected wall, and we are using 100m wire for the remaining sides, it means;
2x + y = 100
Thus, y = 100 - 2x
Since A = xy
We have; A = x(100 - 2x)
A = 100x - 2x²
At maximum area, dA/dx = 0.thus;
dA/dx = 100 - 4x
-4x + 100 = 0
4x = 100
x = 100/4
x = 25
Let's confirm if it is maximum from d²A/dx²
d²A/dx² = -4. This is less than 0 and thus it's maximum.
Let's plug in 25 for x in the area equation;
A_max = 25(100 - 2(25))
A_max = 1250 m²
Answer:
Step-by-step explanation:
y= -5x/2+1
9514 1404 393
Answer:
2√30 ∠-120°
Step-by-step explanation:
The modulus is ...
√((-√30)² +(-3√10)²) = √(30 +90) = √120 = 2√30
The argument is ...
arctan(-3√10/-√30) = arctan(√3) = -120° . . . . a 3rd-quadrant angle
The polar form of the number can be written as ...
(2√30)∠-120°
_____
<em>Additional comments</em>
Any of a number of other formats can be used, including ...
(2√30)cis(-120°)
(2√30; -120°)
(2√30; -2π/3)
2√30·e^(i4π/3)
Of course, the angle -120° (-2π/3 radians) is the same as 240° (4π/3 radians).
__
At least one app I use differentiates between (x, y) and (r; θ) by the use of a semicolon to separate the modulus and argument of polar form coordinates. I find that useful, as a pair of numbers (10.95, 4.19) by itself does not convey the fact that it represents polar coordinates. As you may have guessed, my personal preference is for the notation 10.95∠4.19. (The lack of a ° symbol indicates the angle is in radians.)