Let the angles be x
We are taking both angles as x because they are equal!




➪ <em>T</em><em>h</em><em>u</em><em>s</em><em>,</em><em> </em><em>T</em><em>h</em><em>e</em><em> </em><em>m</em><em>e</em><em>a</em><em>s</em><em>u</em><em>r</em><em>e</em><em> </em><em>o</em><em>f</em><em> </em><em>b</em><em>o</em><em>t</em><em>h</em><em> </em><em>a</em><em>n</em><em>g</em><em>l</em><em>e</em><em>s</em><em> </em><em>i</em><em>s</em><em> </em><em>9</em><em>0</em><em>°</em><em>.</em><em>.</em><em>.</em><em>~</em>
Answer:
5.25
Step-by-step explanation:
Take the distance between the two points and divide by 2.
The distance between the two is 10.5 (9.1-(-1.4))
Divide by two to find the midpoint.
Answer:
![A)\ \ \ \ \left[\begin{array}{ccc}8&-5\\-3&2\\\end{array}\right]](https://tex.z-dn.net/?f=A%29%5C%20%5C%20%5C%20%5C%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D8%26-5%5C%5C-3%262%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
Given the matrix:
, it's inverse is calculated using the formula:
![\left[\begin{array}{ccc}a&b\\c&d\\\end{array}\right]^{-1}=\frac{1}{det\left[\begin{array}{ccc}a&b\\c&d\\\end{array}\right] }\left[\begin{array}{ccc}d&-b\\-c&a\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da%26b%5C%5Cc%26d%5C%5C%5Cend%7Barray%7D%5Cright%5D%5E%7B-1%7D%3D%5Cfrac%7B1%7D%7Bdet%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da%26b%5C%5Cc%26d%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dd%26-b%5C%5C-c%26a%5C%5C%5Cend%7Barray%7D%5Cright%5D)
#Therefore, we calculate as;
![\frac{1}{det\left[\begin{array}{ccc}2&5\\3&8\\\end{array}\right] }\left[\begin{array}{ccc}8&-5\\-3&2\\\end{array}\right] \\\\\\\\\#det\left[\begin{array}{ccc}2&5\\3&8\\\end{array}\right] =1\\\\\\\\=\frac{1}{1}\left[\begin{array}{ccc}8&-5\\-3&2\\\end{array}\right] \\\\\\\\=\left[\begin{array}{ccc}8&-5\\-3&2\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bdet%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%265%5C%5C3%268%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D8%26-5%5C%5C-3%262%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5C%5C%5C%5C%23det%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%265%5C%5C3%268%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%3D1%5C%5C%5C%5C%5C%5C%5C%5C%3D%5Cfrac%7B1%7D%7B1%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D8%26-5%5C%5C-3%262%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5C%5C%5C%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D8%26-5%5C%5C-3%262%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Hence, the inverse of the matrix is ![\left[\begin{array}{ccc}8&-5\\-3&2\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D8%26-5%5C%5C-3%262%5C%5C%5Cend%7Barray%7D%5Cright%5D)
someone please help her or him please