Answer:
12.4968
Step-by-step explanation:
plz mark me brainlest and hope this helps
Given

subject to the constraint

Let

.
The gradient vectors of

and

are:

and

By Lagrange's theorem, there is a number

, such that


It can be seen that

has local extreme values at the given region.
Answer:
<h2>
y = -4/9</h2>
Step-by-step explanation:
Given the system of equations y = 3/2 x − 6, y = −9/2 x + 21, since both expressions are functions of y, we will equate both of them to find the variable x;
3/2 x − 6 = −9/2 x + 21,
Cross multiplying;
3(2x+21) = -9(2x-6)
6x+63 = -18x+54
collecting the like terms;
6x+18x = 54-63
24x = -9
x = -9/24
x = -3/8
To get the value of y, we will substitute x = -3/8 into any of the given equation. Using the first equation;
y = 3/2x-6
y = 3/{2(-3/8)-6}
y = 3/{(-3/4-6)}
y = 3/{(-3-24)/4}
y = 3/(-27/4)
y = 3 * -4/27
y = -4/9
Hence, the value of y is -4/9
Let,
Harry's age - x then Nick is 7x.
After 6 years, Harry is x+6 and Nick is 7x+6
So, 7x+6= 5(x+6)=> 2x = 30-6X = 12
In 6 years, Harry will be 12+6 = 18 years (Ans)