Answer:
22.3838476568 in²
Step-by-step explanation:
First you would find the area of sector (yellow). The formula is 75/360 x π x 3².
this is equal to 5.89048622548. Now the total circle area is 3²xπ = 28.2743338823. 28.2743338823 - 5.89048622548 = 22.3838476568 in²
⭐ Answered by Foxzy0⭐
⭐ Brainliest would be appreciated, I'm trying to reach genius! ⭐
⭐ If you have questions, leave a comment, I'm happy to help! ⭐
Answer:
V ≈ 2011 cm³
Step-by-step explanation:
The volume (V) of a cylinder is calculated as
V = area of base × perpendicular height
V = πr²h ( r is the radius and h the height )
Here r = 8 and h = 10, thus
V = π × 8² × 10
= π × 64 × 10 = 640π ≈ 2011 cm³ ( to nearest whole number )
Y= 86 degrees and x= 47 degrees
I believe.
Y ( 2 ) = - 5.131 · 2² + 31.821 · 2 - 3.3333 =
= - 5.131 · 4 + 63.642 - 3.3333 = -20.524 + 63.642 - 3.3333 = 39.78 ≈ 40
Answer: B ) 40.
Check the picture below.
![~\hfill \stackrel{\textit{\large distance between 2 points}}{d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2}}~\hfill~ \\\\[-0.35em] ~\dotfill\\\\ A(\stackrel{x_1}{1}~,~\stackrel{y_1}{-9})\qquad B(\stackrel{x_2}{8}~,~\stackrel{y_2}{0}) ~\hfill AB=\sqrt{[ 8- 1]^2 + [ 0- (-9)]^2} \\\\\\ AB=\sqrt{7^2+(0+9)^2}\implies AB=\sqrt{7^2+9^2}\implies \boxed{AB=\sqrt{130}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=~%5Chfill%20%5Cstackrel%7B%5Ctextit%7B%5Clarge%20distance%20between%202%20points%7D%7D%7Bd%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%7D~%5Chfill~%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20A%28%5Cstackrel%7Bx_1%7D%7B1%7D~%2C~%5Cstackrel%7By_1%7D%7B-9%7D%29%5Cqquad%20B%28%5Cstackrel%7Bx_2%7D%7B8%7D~%2C~%5Cstackrel%7By_2%7D%7B0%7D%29%20~%5Chfill%20AB%3D%5Csqrt%7B%5B%208-%201%5D%5E2%20%2B%20%5B%200-%20%28-9%29%5D%5E2%7D%20%5C%5C%5C%5C%5C%5C%20AB%3D%5Csqrt%7B7%5E2%2B%280%2B9%29%5E2%7D%5Cimplies%20AB%3D%5Csqrt%7B7%5E2%2B9%5E2%7D%5Cimplies%20%5Cboxed%7BAB%3D%5Csqrt%7B130%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![B(\stackrel{x_1}{8}~,~\stackrel{y_1}{0})\qquad C(\stackrel{x_2}{9}~,~\stackrel{y_2}{-8}) ~\hfill BC=\sqrt{[ 9- 8]^2 + [ -8- 0]^2} \\\\\\ BC=\sqrt{1^2+(-8)^2}\implies \boxed{BC=\sqrt{65}}](https://tex.z-dn.net/?f=B%28%5Cstackrel%7Bx_1%7D%7B8%7D~%2C~%5Cstackrel%7By_1%7D%7B0%7D%29%5Cqquad%20C%28%5Cstackrel%7Bx_2%7D%7B9%7D~%2C~%5Cstackrel%7By_2%7D%7B-8%7D%29%20~%5Chfill%20BC%3D%5Csqrt%7B%5B%209-%208%5D%5E2%20%2B%20%5B%20-8-%200%5D%5E2%7D%20%5C%5C%5C%5C%5C%5C%20BC%3D%5Csqrt%7B1%5E2%2B%28-8%29%5E2%7D%5Cimplies%20%5Cboxed%7BBC%3D%5Csqrt%7B65%7D%7D)
now, we could check for the CA distance, however, we already know that AB ≠ BC, so there's no need.