1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BARSIC [14]
4 years ago
12

A 10-foot board rests against a wall. The angle that the board makes with the

Mathematics
1 answer:
In-s [12.5K]4 years ago
3 0

Answer:17.32foot

Step-by-step explanation:

You might be interested in
Q2 find the degree of the polynomial <br>x4(4x+1)​
jasenka [17]

Step-by-step explanation:

x⁴(4x+1)

4x⁵+x⁴

degree is 5

3 0
3 years ago
Find the missing side lengths.<br><br> Can someone please help???
adoni [48]

Answer:

x = 16

y = 13.8

Step-by-step explanation:

6 0
3 years ago
within a kiambu county,students were randomly assigned to one of two mathematics teachers.Mrs.Elite and Mrs. Bright. After the a
DerKrebs [107]

Using the t-distribution, as we have the standard deviation for the samples, it is found that since the absolute value of the test statistic is greater than the critical value, we reject the claim that Mrs.Elite and Mrs. Bright are equally effective teachers.

<h3>What are the hypothesis tested?</h3>

At the null hypothesis, we test if they are equally effective teachers, that is, the subtraction of their means is 0, hence:

H_0: \mu_1 - \mu_2 = 0

At the alternative hypothesis, we test if they are not equally effective teachers, that is, the subtraction of their means is not 0, hence:

H_1: \mu_1 - \mu_2 \neq 0

<h3>What is the distribution of the differences?</h3>

For Mrs. Elite, we have that:

\mu_1 = 78, \sigma_1 = 10, n_1 = 30, s_1 = \frac{10}{\sqrt{30}} = 1.82574

For Mrs. Bright, we have that:

\mu_2 = 85, \sigma_2 = 15, n_2 = 25, s_2 = \frac{15}{\sqrt{25}} = 3

For the distribution of differences, we have that:

\overline{x} = \mu_1 - \mu_2 = 78 - 85 = -7

s = \sqrt{s_1^2 + s_2^2} = \sqrt{1.82574^2 + 3^2} = 3.5119

<h3>What is the test statistic?</h3>

The test statistic is given by:

t = \frac{\overline{x} - \mu}{s}

In which \mu = 0 is the value tested at the null hypothesis.

Hence:

t = \frac{\overline{x} - \mu}{s}

t = \frac{-7 - 0}{3.5119}

t = -1.99

Considering a<em> two-tailed test</em>, as we are testing if the mean is different of a value, with 30 + 25 - 2 = <em>53 df and a significance level of 0.1</em>, the critical value is of |t^{\ast}| = 1.6741.

Since the absolute value of the test statistic is greater than the critical value, we reject the claim that Mrs.Elite and Mrs. Bright are equally effective teachers.

To learn more about the t-distribution, you can take a look at brainly.com/question/13873630

3 0
3 years ago
Need help please its Calculus. Ill give the 5 stars as well.
algol13

Answer:

\displaystyle y = 2e^\bigg{\frac{x^3}{3}} + 1

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Order of Operations
  • Equality Properties

<u>Algebra I</u>

  • Functions
  • Function Notation
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}

<u>Algebra II</u>

  • Natural logarithms ln and Euler's number e

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Slope Fields

  • Separation of Variables
  • Solving Differentials

Integrals

  • Antiderivatives

Integration Constant C

Integration Rule [Reverse Power Rule]:                                                                   \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Addition/Subtraction]:                                                           \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Logarithmic Integration:                                                                                            \displaystyle \int {\frac{1}{u}} \, dx = ln|u| + C

Step-by-step explanation:

*Note:  

When solving differential equations in slope fields, disregard the integration constant C for variable y.

<u />

<u>Step 1: Define</u>

\displaystyle \frac{dy}{dx} = x^2(y - 1)

\displaystyle f(0) = 3

<u>Step 2: Rewrite</u>

<em>Separation of Variables. Get differential equation to a form where we can integrate both sides and rewrite Leibniz Notation.</em>

  1. [Separation of Variables] Rewrite Leibniz Notation:                                      \displaystyle dy = x^2(y - 1) \ dx
  2. [Separation of Variables] Isolate <em>y</em>'s together:                                               \displaystyle \frac{1}{y - 1} \ dy = x^2 \ dx

<u>Step 3: Find General Solution Pt. 1</u>

  1. [Differential] Integrate both sides:                                                                   \displaystyle \int {\frac{1}{y - 1}} \, dy = \int {x^2} \, dx
  2. [dx Integral] Integrate [Integration Rule - Reverse Power Rule]:                   \displaystyle \int {\frac{1}{y - 1}} \, dy = \frac{x^3}{3} + C

<u>Step 4: Find General Solution Pt. 2</u>

<em>Identify variables for u-substitution for dy.</em>

  1. Set:                                                                                                                    \displaystyle u = y - 1
  2. Differentiate [Basic Power Rule]:                                                                     \displaystyle du = dy

<u>Step 5: Find General Solution Pt. 3</u>

  1. [dy Integral] U-Substitution:                                                                             \displaystyle \int {\frac{1}{u}} \, du = \frac{x^3}{3} + C
  2. [dy Integral] Integrate [Logarithmic Integration]:                                            \displaystyle ln|u| = \frac{x^3}{3} + C
  3. [Equality Property] e both sides:                                                                     \displaystyle e^\bigg{ln|u|} = e^\bigg{\frac{x^3}{3} + C}
  4. Simplify:                                                                                                             \displaystyle |u| = Ce^\bigg{\frac{x^3}{3}}
  5. Rewrite:                                                                                                             \displaystyle u = \pm Ce^\bigg{\frac{x^3}{3}}
  6. Back-Substitute:                                                                                               \displaystyle y - 1 = \pm Ce^\bigg{\frac{x^3}{3}}
  7. [Equality Property] Isolate <em>y</em>:                                                                            \displaystyle y = \pm Ce^\bigg{\frac{x^3}{3}} + 1

General Form:  \displaystyle y = \pm Ce^\bigg{\frac{x^3}{3}} + 1

<u>Step 6: Find Particular Solution</u>

  1. Substitute in function values [General Form]:                                                \displaystyle 3 = \pm Ce^\bigg{\frac{0^3}{3}} + 1
  2. Simplify:                                                                                                             \displaystyle 3 = \pm C + 1
  3. [Equality Property] Isolate <em>C</em>:                                                                           \displaystyle 2 = \pm C
  4. Rewrite:                                                                                                             \displaystyle C = 2
  5. Substitute in <em>C</em> [General Form]:                                                                       \displaystyle y = 2e^\bigg{\frac{x^3}{3}} + 1

∴ our particular solution is  \displaystyle y = 2e^\bigg{\frac{x^3}{3}} + 1.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentials and Slope Fields

Book: College Calculus 10e  

6 0
3 years ago
What is the constant of proportionality in this proportional relationship?
lora16 [44]

Answer:

7/9

Step-by-step explanation:

1 1/5 / 2 = 7/9 = 0.777

6 0
3 years ago
Other questions:
  • Jacob and Zachary go to the movie theater and purchase refreshments for their friends. Jacob
    5·2 answers
  • Which equation gives the number of 1/3 inches that are in 5/6 inch?
    5·1 answer
  • Quadrilateral ABCD is a parallelogram. Given this, fill in the coordinates below.
    9·1 answer
  • What is the solution to the linear equation? 2/3x – 1/2 = 1/3 + 5/6 x
    7·2 answers
  • Is the answer D 108 square cm​
    9·2 answers
  • Help with this one!!!<br><br><br> Show steps pls :) <br><br><br> Please round to the nearest cent.
    15·1 answer
  • A number square roots are integers or the quotients of integers
    13·1 answer
  • the sum of two numbers is 121. if the larger number is 7 more than the smaller number, find both number.
    9·1 answer
  • The diagram shows a triangle.<br> x+19°<br> 6x–7°<br> 56°<br> What is the value of x?<br> x = <br> °
    9·1 answer
  • Solve for 2. Round to the nearest tenth, if necessary.<br> 19<br> 38<br> R<br> X
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!