Answer:
<u></u>
- <u>1. The potential energy of the swing is the greatest at the position B.</u>
- <u>2. As the swing moves from point B to point A, the kinetic energy is increasing.</u>
Explanation:
Even though the syntax of the text is not completely clear, likely because it accompanies a drawing that is not included, it results clear that the posittion A is where the seat is at the lowest position, and the position B is upper.
The gravitational <em>potential energy </em>is directly proportional to the height of the objects with respect to some reference altitude. Thus, when the seat is at the position A the swing has the smallest potential energy and when the seat is at the <em>position B the swing has the greatest potential energy.</em>
Regarding the forms of energy, as the swing moves from point B to point A, it is going downward, gaining kinetic energy (speed) at the expense of the potential energy (losing altitude). When the seat passes by the position A, the kinetic energy is maximum and the potential energy is miminum. Then the seat starts to gain altitude again, losing the kinetic energy and gaining potential energy, up to it gets to the other end,
Answer: Mabye like an ocean with dolphins swiming/jumping? Or even use the blue as a sky and then put green grass and do foxes or and a phoenix flying with a fox under it?
Explanation:
Just some ideas!
Write what you can improve in your fitness test
The first thing you should do is calculate the work done when climbing the stairs. This work by definition will be given by:
W = F * d
W = (m * g) * (d)
W = ((71) * (9.8)) * (3) = 2087.4J
Then, you can calculate the power that in this case is given by
P = W / t
P = (2087.4) / (10) = 208.74W
To have the result in HP we use the fact that 1HP = 746W
P = (208.74) / (746)
P = 0.28 HP
answer
the power you produce in running up a flight of stairs is 0.28 HP