Answer: ![A^{-1}=\left[\begin{array}{cc}\frac{3}{2}&-\frac{1}{2}\\-2&1\end{array}\right]](https://tex.z-dn.net/?f=A%5E%7B-1%7D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B3%7D%7B2%7D%26-%5Cfrac%7B1%7D%7B2%7D%5C%5C-2%261%5Cend%7Barray%7D%5Cright%5D)
<u>Step-by-step explanation:</u>
![\left[\begin{array}{cc}2&1\\4&3\end{array}\right]=\left[\begin{array}{cc}1&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%261%5C%5C4%263%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D)
![\dfrac{1}{2}Row\ 1\rightarrow\left[\begin{array}{cc}1&\frac{1}{2}\\4&3\end{array}\right]=\left[\begin{array}{cc}\frac{1}{2}&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cdfrac%7B1%7D%7B2%7DRow%5C%201%5Crightarrow%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26%5Cfrac%7B1%7D%7B2%7D%5C%5C4%263%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B1%7D%7B2%7D%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D)
![Row\ 2 -4 \ Row\ 1\rightarrow \left[\begin{array}{cc}1&\frac{1}{2}\\0&1\end{array}\right]=\left[\begin{array}{cc}\frac{1}{2}&0\\-2&1\end{array}\right]](https://tex.z-dn.net/?f=Row%5C%202%20-4%20%5C%20Row%5C%201%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26%5Cfrac%7B1%7D%7B2%7D%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B1%7D%7B2%7D%260%5C%5C-2%261%5Cend%7Barray%7D%5Cright%5D)
![Row\ 1-\dfrac{1}{2}\ Row\ 2 \rightarrow \left[\begin{array}{cc}1&0\\0&1\end{array}\right]=\left[\begin{array}{cc}\frac{3}{2}&-\frac{1}{2}\\-2&1\end{array}\right]](https://tex.z-dn.net/?f=Row%5C%201-%5Cdfrac%7B1%7D%7B2%7D%5C%20Row%5C%202%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B3%7D%7B2%7D%26-%5Cfrac%7B1%7D%7B2%7D%5C%5C-2%261%5Cend%7Barray%7D%5Cright%5D)
we have

we know that
<u>The Rational Root Theorem</u> states that when a root 'x' is written as a fraction in lowest terms

p is an integer factor of the constant term, and q is an integer factor of the coefficient of the first monomial.
So
in this problem
the constant term is equal to 
and the first monomial is equal to
-----> coefficient is 
So
possible values of p are 
possible values of q are 
therefore
<u>the answer is</u>
The all potential rational roots of f(x) are
(+/-)
,(+/-)
,(+/-)
,(+/-)
,(+/-)
,(+/-)
Answer:
looking at anwser now
Step-by-step explanation:
1.66333333 because u divide 4.99 by 3 to get the value of one
Answer: 120
Step-by-step explanation:
From the question, we are informed that there are 10 people in a math club and that three people will be chosen for the Pi Day committee.
The number of different ways that the club members can structure the committee goes thus:
This can be solved by:
nCr = n! / r! (n - r)!
where n = 10
r = 3
= n! / r! (n - r)!
= 10! / 3! (10 - 3)!
= (10 × 9 × 8) / (3 × 2)
=120