1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
astra-53 [7]
4 years ago
7

Is Alexis drove her car for three hours and drove 150 miles and then drove her car for 350 miles in four hours what is her avera

ge speed for the journey

Mathematics
1 answer:
goblinko [34]4 years ago
4 0
Total miles:350+150=500
Total hours:4+3=7
Avg speed:500/7=71.429 mph
You might be interested in
If PQ=21 cm and QR=5cm, then what are the possible lengths for PR so that line PQ, line QR, and line PR can form a triangle? exp
Klio2033 [76]
We know that PQ is 21 cm and QR is 5 cm. There are only 2 possible answer for this and you use only one formula. It's called the Pythagorean theorem. 

The first possible is this. If the hypotenuse(the longest side of a triangle) is PR, we do:
 a² + b² = c² ←Fill in the numbers
21² + 5² = c²
441 + 25 = c²
466 = c²
√466 = 21.12 cm←Possible length

The second possible is this:
5² + b² = 21²
25 + b² = 441
b² = 441 - 25
b² = 416
√416 = 20.4←Another possible answer
8 0
4 years ago
Sqrt45a^5 simplified
Anestetic [448]

\sqrt{45a^5}

[scomposition of 45]

\sqrt{9*5*a^5}

[9 = 3^2, must use this notation (not 3*3)]

\sqrt{3^2*5*a^5}

[We appy one of the proprieties of square roots]

\sqrt{3^2}* \sqrt{5}*\sqrt{a^5}

[now we semplify: we must take out as much as possible all the elements under roots]

[to do that, we must divide the esponent of each element with the index of square roots (2)]

so

\sqrt{3^2}, 2/2 = 1

\sqrt{5}, 1/2 = 0 with 1 of rest

\sqrt{a^5}, 5/2 = 2 with 1 rest

[well, after do that, we can take out the elements under tbhe square roots!]

The quotient of each division is the esponent of the element out of the root

The rest of each division is the esponent of the element under the root

so:

3^{1} (quotient = 1, see the first operation) * \sqrt{5} (rest = 1, see the second operation) * a^{2} (quotient = 2, see the third operation) * \sqrt{a^1} (rest = 1, see the third operation)

The final result is:

3 (=3^1) * a² * √5 * √a

3a²√5a

It's more intuitive and easy, but the explanation (necessary) is very long. If you have other questions, ask me here in the comments! Also sorry for my english, not so good!

8 0
4 years ago
Which of the following data sets represents a positive correlation?
Papessa [141]
The answer would be B, because it has a general upward slope

4 0
4 years ago
Read 2 more answers
Solve the equation -18 +3x = -6
Eddi Din [679]
You want to solve for x so add 18 from both sides of the equal sign. making it 3x=12. then divide both sides by 3 making x=4. x is 4.

5 0
4 years ago
Read 2 more answers
Help this math optional math problem to solve l will make you brainest person ​
NeTakaya

Answer: have a nice day

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Other questions:
  • Find the length of a rectangular prism having a volumen of 2,830.6 cubic meters,width of 18.5 meters and height of 9 meters
    11·2 answers
  • Can someone help me with this problem please?
    11·1 answer
  • How do simplify -15.6/-4
    8·2 answers
  • How many, and what type of, solutions does y=5x^2−10x−12 have? 2 rational solutions 1 rational solution 2 irrational solutions 2
    15·2 answers
  • Simplify. (9.5) - (-4.36) + (1.094) 14.954 7.404 6.234
    15·2 answers
  • Sam is playing basketball and his position on a coordinate plane is given as (3,6). He dodges other players by moving 5
    14·1 answer
  • The area of a circle is 94pi squared meters. What is the radius of the circle?
    13·1 answer
  • Find the value of x and AB if is a segment bisector of .
    12·2 answers
  • 3a+2b-8a+b<br> What is the answer
    11·2 answers
  • Say true false .<br>empty set is the subset of any set​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!