1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Brut [27]
3 years ago
14

PLEASE HELP, GOOD ANSWERS GET BRAINLIEST. +40 POINTS WRONG ANSWERS GET REPORTED

Mathematics
2 answers:
MA_775_DIABLO [31]3 years ago
7 0
1. Ans:(A) 123

Given function: f(x) = 8x^2 + 11x
The derivative would be:
\frac{d}{dx} f(x) = \frac{d}{dx}(8x^2 + 11x)
=> \frac{d}{dx} f(x) = \frac{d}{dx}(8x^2) + \frac{d}{dx}(11x)
=> \frac{d}{dx} f(x) = 2*8(x^{2-1}) + 11
=> \frac{d}{dx} f(x) = 16x + 11

Now at x = 7:
\frac{d}{dx} f(7) = 16(7) + 11

=> \frac{d}{dx} f(7) = 123

2. Ans:(B) 3

Given function: f(x) =3x + 8
The derivative would be:
\frac{d}{dx} f(x) = \frac{d}{dx}(3x + 8)
=> \frac{d}{dx} f(x) = \frac{d}{dx}(3x) + \frac{d}{dx}(8)
=> \frac{d}{dx} f(x) = 3*1 + 0
=> \frac{d}{dx} f(x) = 3

Now at x = 4:
\frac{d}{dx} f(4) = 3 (as constant)

=>Ans:  \frac{d}{dx} f(4) = 3

3. Ans:(D) -5

Given function: f(x) = \frac{5}{x}
The derivative would be:
\frac{d}{dx} f(x) = \frac{d}{dx}(\frac{5}{x})
or 
\frac{d}{dx} f(x) = \frac{d}{dx}(5x^{-1})
=> \frac{d}{dx} f(x) = 5*(-1)*(x^{-1-1})
=> \frac{d}{dx} f(x) = -5x^{-2}

Now at x = -1:
\frac{d}{dx} f(-1) = -5(-1)^{-2}

=> \frac{d}{dx} f(-1) = -5 *\frac{1}{(-1)^{2}}
=> Ans: \frac{d}{dx} f(-1) = -5

4. Ans:(C) 7 divided by 9

Given function: f(x) = \frac{-7}{x}
The derivative would be:
\frac{d}{dx} f(x) = \frac{d}{dx}(\frac{-7}{x})
or 
\frac{d}{dx} f(x) = \frac{d}{dx}(-7x^{-1})
=> \frac{d}{dx} f(x) = -7*(-1)*(x^{-1-1})
=> \frac{d}{dx} f(x) = 7x^{-2}

Now at x = -3:
\frac{d}{dx} f(-3) = 7(-3)^{-2}

=> \frac{d}{dx} f(-3) = 7 *\frac{1}{(-3)^{2}}
=> Ans: \frac{d}{dx} f(-3) = \frac{7}{9}

5. Ans:(C) -8

Given function: 
f(x) = x^2 - 8

Now if we apply limit:
\lim_{x \to 0} f(x) = \lim_{x \to 0} (x^2 - 8)

=> \lim_{x \to 0} f(x) = (0)^2 - 8
=> Ans: \lim_{x \to 0} f(x) = - 8

6. Ans:(C) 9

Given function: 
f(x) = x^2 + 3x - 1

Now if we apply limit:
\lim_{x \to 2} f(x) = \lim_{x \to 2} (x^2 + 3x - 1)

=> \lim_{x \to 2} f(x) = (2)^2 + 3(2) - 1
=> Ans: \lim_{x \to 2} f(x) = 4 + 6 - 1 = 9

7. Ans:(D) doesn't exist.

Given function: f(x) = -6 + \frac{x}{x^4}
In this case, even if we try to simplify it algebraically, there would ALWAYS be x power something (positive) in the denominator. And when we apply the limit approaches to 0, it would always be either + infinity or -infinity. Hence, Limit doesn't exist.

Check:
f(x) = -6 + \frac{x}{x^4} \\ f(x) = -6 + \frac{1}{x^3} \\ f(x) = \frac{-6x^3 + 1}{x^3} \\ Rationalize: \\ f(x) = \frac{-6x^3 + 1}{x^3} * \frac{x^{-3}}{x^{-3}} \\ f(x) = \frac{-6x^{3-3} + x^{-3}}{x^0} \\ f(x) = -6 + \frac{1}{x^3} \\ Same

If you apply the limit, answer would be infinity.

8. Ans:(A) Doesn't Exist.

Given function: f(x) = 9 + \frac{x}{x^3}
Same as Question 7
If we try to simplify it algebraically, there would ALWAYS be x power something (positive) in the denominator. And when we apply the limit approaches to 0, it would always be either + infinity or -infinity. Hence, Limit doesn't exist.

9, 10.
Please attach the graphs. I shall amend the answer. :)

11. Ans:(A) Doesn't exist.

First We need to find out: \lim_{x \to 9} f(x) where,
f(x) = \left \{ {{x+9, ~~~~~x \textless 9} \atop {9- x,~~~~~x \geq 9}} \right.

If both sides are equal on applying limit then limit does exist.

Let check:
If x \textless 9: answer would be 9+9 = 18
If x \geq 9: answer would be 9-9 = 0

Since both are not equal, as 18 \neq 0, hence limit doesn't exist.


12. Ans:(B) Limit doesn't exist.

Find out: \lim_{x \to 1} f(x) where,

f(x) = \left \{ {{1-x, ~~~~~x \textless 1} \atop {x+7,~~~~~x \textgreater 1} } \right. \\ and \\ f(x) = 8, ~~~~~ x=1

If all of above three are equal upon applying limit, then limit exists.

When x < 1 -> 1-1 = 0
When x = 1 -> 8
When x > 1 -> 7 + 1 = 8

ALL of the THREE must be equal. As they are not equal. 0 \neq 8; hence, limit doesn't exist.

13. Ans:(D) -∞; x = 9

f(x) = 1/(x-9).

Table:

x                      f(x)=1/(x-9)       

----------------------------------------

8.9                       -10

8.99                     -100

8.999                   -1000

8.9999                 -10000

9.0                        -∞


Below the graph is attached! As you can see in the graph that at x=9, the curve approaches but NEVER exactly touches the x=9 line. Also the curve is in downward direction when you approach from the left. Hence, -∞,  x =9 (correct)

 14. Ans: -6

s(t) = -2 - 6t

Inst. velocity = \frac{ds(t)}{dt}

Therefore,

\frac{ds(t)}{dt} = \frac{ds(t)}{dt}(-2-6t) \\ \frac{ds(t)}{dt} = 0 - 6 = -6

At t=2,

Inst. velocity = -6


15. Ans: +∞,  x =7 

f(x) = 1/(x-7)^2.

Table:

x              f(x)= 1/(x-7)^2     

--------------------------

6.9             +100

6.99           +10000

6.999         +1000000

6.9999       +100000000

7.0              +∞

Below the graph is attached! As you can see in the graph that at x=7, the curve approaches but NEVER exactly touches the x=7 line. The curve is in upward direction if approached from left or right. Hence, +∞,  x =7 (correct)

-i

dem82 [27]3 years ago
4 0

Answer:

1. Ans:(A) 123

Given function:  

The derivative would be:

=>  

=>  

=>  

Now at x = 7:

=>  

2. Ans:(B) 3

Given function:  

The derivative would be:

=>  

=>  

=>  

Now at x = 4:

(as constant)

=>Ans:   3

3. Ans:(D) -5

Given function:  

The derivative would be:

or  

=>  

=>  

Now at x = -1:

=>  

=> Ans:  

4. Ans:(C) 7 divided by 9

Given function:  

The derivative would be:

or  

=>  

=>  

Now at x = -3:

=>  

=> Ans:  

5. Ans:(C) -8

Given function:  

Now if we apply limit:

=>  

=> Ans:  

6. Ans:(C) 9

Given function:  

Now if we apply limit:

=>  

=> Ans:  

7. Ans:(D) doesn't exist.

Given function:  

In this case, even if we try to simplify it algebraically, there would ALWAYS be x power something (positive) in the denominator. And when we apply the limit approaches to 0, it would always be either + infinity or -infinity. Hence, Limit doesn't exist.

Check:

If you apply the limit, answer would be infinity.

8. Ans:(A) Doesn't Exist.

Given function:  

Same as Question 7

If we try to simplify it algebraically, there would ALWAYS be x power something (positive) in the denominator. And when we apply the limit approaches to 0, it would always be either + infinity or -infinity. Hence, Limit doesn't exist.

9, 10.

Please attach the graphs. I shall amend the answer. :)

11. Ans:(A) Doesn't exist.

First We need to find out:  where,

If both sides are equal on applying limit then limit does exist.

Let check:

If x  9: answer would be 9+9 = 18

If x  9: answer would be 9-9 = 0

Since both are not equal, as , hence limit doesn't exist.

12. Ans:(B) Limit doesn't exist.

Find out:  where,

If all of above three are equal upon applying limit, then limit exists.

When x < 1 -> 1-1 = 0

When x = 1 -> 8

When x > 1 -> 7 + 1 = 8

ALL of the THREE must be equal. As they are not equal. 0  8; hence, limit doesn't exist.

13. Ans:(D) -∞; x = 9

f(x) = 1/(x-9).

Table:

x                      f(x)=1/(x-9)        

----------------------------------------

8.9                       -10

8.99                     -100

8.999                   -1000

8.9999                 -10000

9.0                        -∞

Below the graph is attached! As you can see in the graph that at x=9, the curve approaches but NEVER exactly touches the x=9 line. Also the curve is in downward direction when you approach from the left. Hence, -∞,  x =9 (correct)

14. Ans: -6

s(t) = -2 - 6t

Inst. velocity =  

Therefore,

At t=2,

Inst. velocity = -6

15. Ans: +∞,  x =7  

f(x) = 1/(x-7)^2.

Table:

x              f(x)= 1/(x-7)^2      

--------------------------

6.9             +100

6.99           +10000

6.999         +1000000

6.9999       +100000000

7.0              +∞

Below the graph is attached! As you can see in the graph that at x=7, the curve approaches but NEVER exactly touches the x=7 line. The curve is in upward direction if approached from left or right. Hence, +∞,  x =7 (correct)

-s

Step-by-step explanation:

You might be interested in
Rewrite this polynomial in STANDARD FORM:<br>5x-10x^2+8x^3​
Ainat [17]

Answer:

8 {x}^{3}   -  10 {x}^{2}  + 5x

Step-by-step explanation:

5x - 10 {x}^{2} + 8 {x}^{3}   \\   \red{ \bold{= 8 {x}^{3}   -  10 {x}^{2}  + 5x}} \\ is \: in \: the \: standard \: form \\

4 0
3 years ago
Find a solution to the equation 4(x + 7) = 38
yKpoI14uk [10]

Answer:

4(x+7)=38

4x+28=38

4x=38-28

4x=10

(divide by 4)

x=2whole number 2/4

=2whole number 1/2

or x=2.5

6 0
3 years ago
Find each probability below -- as a fraction, decimal and percent <br> Will give brainliest
Komok [63]

Answer:  

I was not sure to what decimal point to round it to

a) Fraction: 2/7    Decimal: 0.28571   Percent: 28.571 %

b) Fraction: 5/7    Decimal: 0.71428   Percent: 71.428 %

c) Fraction: 1/7     Decimal: 0.14285   Percent: 14.285 %

7 0
3 years ago
Read 2 more answers
A ski rental store rents a pair of skis for $44 a day and a snowboard for $58 a day. Yesterday, the store made $2,232 on ski and
Katen [24]

First, let the number of skis rented by x and the number of snowboards rented by y. We can then assemble the first equation from the amount of money made from the rentals.


44x + 58y = 2232


The second equation can come from the fact that 9 more skis were rented than snowboards.


y = x - 9


Therefore our system is:


44x + 58y = 2232

y = x - 9

3 0
4 years ago
35 points in 20 minutes or 49 points in 35 minutes? Find which is greater.
Vitek1552 [10]

Answer:

35 points in 20minutes is greater than 49 points in 35 minutes.

7 0
3 years ago
Read 2 more answers
Other questions:
  • A student wants to save $8000 for college in 5 years. How much should be put into an account that pays 5.2% annual interest comp
    14·1 answer
  • CHECK MY WORK PLEASE
    13·2 answers
  • Multiply and simplify 11/12•8/15•5/16•9/22
    5·1 answer
  • 15 points<br><br> Help please
    9·2 answers
  • Which number is a prime number?​
    11·2 answers
  • Slope of the line that passes through (6,0) and (0,-6)
    10·1 answer
  • Hep I’m bout to fail if I don’t get this right will give brainless if correct
    9·1 answer
  • .
    12·1 answer
  • Please helppppppp????
    9·1 answer
  • Hich value, when placed in the box, would result in a system of equations with infinitely many solutions?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!