Answer:
The solution to above problem is 1- $45n 2- $(250+28n) 3- $(500+20n)
Step-by-step explanation:
35.53 is the answer I hoped that helped
Answer:
They're similar in that they both have to maintain a steady rate of rise as they grow. While graphing, you can't adjust the slope or exponent after traveling up a graph.
Step-by-step explanation:
Answer:
sum of 22nd = 1,428.05
sum of 23 to 40 is 932.53
Step-by-step explanation:
A(n)=20(1.1)^n-1
20 is the first term or a1
1.1 is the common ratio or r
A(22) = 20(1.1)^22-1
22nd term = 20(1.1)^21
22nd term = 148.00
sum of geometric sequence
formula
Sn = a1(1-r^n)/1-r
Sn = sum
a1 = first term
n = number of term
r = constant ratio
sum of 22nd = 1,428.05.
23 to 40 is 17 terms
Sequence: 23, 25.3, 27.83, 30.613, 33.6743, 37.04173, 40.745903 ...
The 17th term: 105.684378686
Sum of the first 17 terms: 932.528165548
socratic
miniwebtoolcomgeometricsequencecalculator