1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
viva [34]
4 years ago
5

In how many unique ways can 4 boys and 4 girls sit around a circle table if all the boys sit together?

Mathematics
1 answer:
vredina [299]4 years ago
3 0
Working it completely in my head, I come up with 2,880 unique ways. I'll check it when I get back to a computer with an actual keyboard, and also explain my reasoning if anybody's interested.
You might be interested in
Kedir bout 200 eggs for Birr 50 Birr and sells them for Birr 0.30 each.
ella [17]

Answer:

Yes, Kedir made profit.

Step-by-step explanation:

0.30 x 200 = 60 Birr

60 Birr is more than 50 Birr

He made profit of 10Birr, which is 20% of 50 Birr

8 0
3 years ago
0.4(2-0.5) = 0.2(1 + 3)<br> Help me
Lina20 [59]

Answer:

0.6 = 08

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Greg spends $0.45 on an eraser and $0.30 on a pen. How much money does Greg spend in all?
natali 33 [55]
So, we need to add.

45 + 30 = 85.

$0.85 is your answer.

Glad I could help, and good luck!
__________________________
__________________________
__________________________

5 0
3 years ago
Read 2 more answers
Evaluate the integral, show all steps please!
Aloiza [94]

Answer:

\displaystyle \int \dfrac{1}{(9-x^2)^{\frac{3}{2}}}\:\:\text{d}x=\dfrac{x}{9\sqrt{9-x^2}} +\text{C}

Step-by-step explanation:

<u>Fundamental Theorem of Calculus</u>

\displaystyle \int \text{f}(x)\:\text{d}x=\text{F}(x)+\text{C} \iff \text{f}(x)=\dfrac{\text{d}}{\text{d}x}(\text{F}(x))

If differentiating takes you from one function to another, then integrating the second function will take you back to the first with a constant of integration.

Given indefinite integral:

\displaystyle \int \dfrac{1}{(9-x^2)^{\frac{3}{2}}}\:\:\text{d}x

Rewrite 9 as 3²  and rewrite the 3/2 exponent as square root to the power of 3:

\implies \displaystyle \int \dfrac{1}{\left(\sqrt{3^2-x^2}\right)^3}\:\:\text{d}x

<u>Integration by substitution</u>

<u />

<u />\boxed{\textsf{For }\sqrt{a^2-x^2} \textsf{ use the substitution }x=a \sin \theta}

\textsf{Let }x=3 \sin \theta

\begin{aligned}\implies \sqrt{3^2-x^2} & =\sqrt{3^2-(3 \sin \theta)^2}\\ & = \sqrt{9-9 \sin^2 \theta}\\ & = \sqrt{9(1-\sin^2 \theta)}\\ & = \sqrt{9 \cos^2 \theta}\\ & = 3 \cos \theta\end{aligned}

Find the derivative of x and rewrite it so that dx is on its own:

\implies \dfrac{\text{d}x}{\text{d}\theta}=3 \cos \theta

\implies \text{d}x=3 \cos \theta\:\:\text{d}\theta

<u>Substitute</u> everything into the original integral:

\begin{aligned}\displaystyle \int \dfrac{1}{(9-x^2)^{\frac{3}{2}}}\:\:\text{d}x & = \int \dfrac{1}{\left(\sqrt{3^2-x^2}\right)^3}\:\:\text{d}x\\\\& = \int \dfrac{1}{\left(3 \cos \theta\right)^3}\:\:3 \cos \theta\:\:\text{d}\theta \\\\ & = \int \dfrac{1}{\left(3 \cos \theta\right)^2}\:\:\text{d}\theta \\\\ & =  \int \dfrac{1}{9 \cos^2 \theta} \:\: \text{d}\theta\end{aligned}

Take out the constant:

\implies \displaystyle \dfrac{1}{9} \int \dfrac{1}{\cos^2 \theta}\:\:\text{d}\theta

\textsf{Use the trigonometric identity}: \quad\sec^2 \theta=\dfrac{1}{\cos^2 \theta}

\implies \displaystyle \dfrac{1}{9} \int \sec^2 \theta\:\:\text{d}\theta

\boxed{\begin{minipage}{5 cm}\underline{Integrating $\sec^2 kx$}\\\\$\displaystyle \int \sec^2 kx\:\text{d}x=\dfrac{1}{k} \tan kx\:\:(+\text{C})$\end{minipage}}

\implies \displaystyle \dfrac{1}{9} \int \sec^2 \theta\:\:\text{d}\theta = \dfrac{1}{9} \tan \theta+\text{C}

\textsf{Use the trigonometric identity}: \quad \tan \theta=\dfrac{\sin \theta}{\cos \theta}

\implies \dfrac{\sin \theta}{9 \cos \theta} +\text{C}

\textsf{Substitute back in } \sin \theta=\dfrac{x}{3}:

\implies \dfrac{x}{9(3 \cos \theta)} +\text{C}

\textsf{Substitute back in }3 \cos \theta=\sqrt{9-x^2}:

\implies \dfrac{x}{9\sqrt{9-x^2}} +\text{C}

Learn more about integration by substitution here:

brainly.com/question/28156101

brainly.com/question/28155016

4 0
2 years ago
Solve the following equation for the variable x. ( 1/27 is a fraction )
igor_vitrenko [27]
The answer is,
\frac{10935}{59048}
Also equivalent to about, 0.185188.
5 0
3 years ago
Read 2 more answers
Other questions:
  • I need help on this.
    5·2 answers
  • Lots of points :)) it’s hard
    14·2 answers
  • What is the coefficient of the c-term of the algebraic expression 14a - 72r - c - 34d? A) -34
    9·1 answer
  • Real or Irrational?<br> 2.395...
    10·1 answer
  • Is 63 / 168 equivalent to 312 / 832 ​
    12·2 answers
  • What is mŁA?<br> 85°<br> A<br> 145°
    8·2 answers
  • Construct a rhombus with a 15 degree angle and sides equal to r.​
    6·1 answer
  • Please can i get answers on here and not from a download website.
    12·2 answers
  • A line with a slope of 4 passes through (6,11). Equation?
    14·1 answer
  • Homework 3.4: Compound InequalitiesScore: 10.38/1811/18 answeredQuestion 6&lt;&gt;04Give the interval that describes the set of
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!