The term "autonomous" refers to an ordinary differential equation that relates the derivatives of the dependent variable as a function *only* of the dependent variable. In other words, the ODE doesn't explicitly depend on the independent variable.
Examples:

is autonomous

is *not* autonomous
Answer:
what is the question asked?
Step-by-step explanation:
By Hand
Step 1:
Put the numbers in order.
1, 2, 5, 6, 7, 9, 12, 15, 18, 19, 27.
Step 2:
Find the median.
1, 2, 5, 6, 7, 9, 12, 15, 18, 19, 27.
Step 3:
Place parentheses around the numbers above and below the median.
Not necessary statistically, but it makes Q1 and Q3 easier to spot.
(1, 2, 5, 6, 7), 9, (12, 15, 18, 19, 27).
Step 4:
Find Q1 and Q3
Think of Q1 as a median in the lower half of the data and think of Q3 as a median for the upper half of data.
(1, 2, 5, 6, 7), 9, ( 12, 15, 18, 19, 27). Q1 = 5 and Q3 = 18.
Step 5:
Subtract Q1 from Q3 to find the interquartile range.
18 – 5 = 13.
Answer:
5mm + 14mm+3mm add together area 22 for the triange
Step-by-step explanation:
We have an equation: (5+b)/2= 5
⇒ 5+b= 5*2
⇒ 5+b= 10
⇒ b= 10-5
⇒ b= 5
Final answer: b=5~