Answer: the answer is a
Step-by-step explanation:
Answer: 2 lbs of cherries
Cherries = $5 per pound
Oranges = $2 per pound
Total Cost = $18
Total weight = 6 lb
------------------------------------
Define x and y
------------------------------------
Let x be the number of lb of cherries
Let y be the number of lb of oranges
------------------------------------
Construct equations
------------------------------------
x + y = 6 ---------------------------- (1)
5x + 2y = 18 ---------------------------- (2)
------------------------------------------------------------------------
Solve x and y
------------------------------------------------------------------------
From equation (1):
x + y = 6
x = 6 - y
------------------------------------------------------------------------
Substitute x = 6 - y into equation 2
------------------------------------------------------------------------
5x + 2y = 18
5 (6 - y) + 2y = 18
30 - 5y + 2y = 18
3y = 30 - 18
3y = 12
y = 4
------------------------------------------------------------------------
Substitute y = 4 into equation (1)
------------------------------------------------------------------------
x + y = 6
x + 4 = 6
x = 2
------------------------------------------------------------------------
Find the weight of cherries and oranges
------------------------------------------------------------------------
Cherry = x = 2 lb
Oranges = y = 4 lbs
------------------------------------------------------------------------
Answer: Alex bought 2 lb of cherries
------------------------------------------------------------------------
Devisor is the bottom number
hmm
11.75=11 and 3/4
so times it by 4 to clear denomenator
but do it by top and bottom
23.4/11.75 times 4/4=93.6/47
so times it by 4/4
Answer:
y = 6x + 0
Step-by-step explanation:
Equation of a line
y = mx + c
Given
( 0 , 0) ( -1/2 , -3)
find the slope m
m = y2 - y1 / x2 - x1
x1 = 0
y1 = 0
x2 = -1/2
y2 = -3
Insert the values
m = y2 - y1 / x2 - x1
m = -3 - 0 / -1/2 - 0
= -3/-1/2
Minus cancels minus
= 3/1/2
= 3/1 ÷ 1/2
= 3/1 × 2/1
= 6/1
= 6
m = 6
Substitute any of the two points given into the equation of a line
y = mx + c
Where
y - intercept point y
x - intercept point x
m - slope of the line
c - intercept
(-1/2 , -3)
x = -1/2
y = -3
-3 = 6(-1/2) + c
-3 = -6/2 + c
-3 = -3 + c
-3 + 3 = c
c = 0
y = 6x + 0
The equation of the line is
y = 6x + 0