Answer:
P (H₂) = 741 torr
Explanation:
Let's begin by listing out the given parameters:
Temperature (water) = 298 K, volume = 45.6 mL,
atmospheric pressure, P (total) = 765 torr, vapor pressure of water, P (H₂O) = 24 torr
To get the pressure of inside the tube, P (H₂), we apply Dalton's Law of Partial Pressure and we have:
P (total) = P (H₂) + P (H₂O)
P (total) = 765 torr, P (H₂O) = 24 torr
P (H₂) = P (total) - P (H₂O) = 765 - 24
P (H₂) = 741 torr
It therefore becomes clear that the pressure of H₂(g) is 741 torr
<span>We need to calculate the equivalent amount in units of moles of ammonium ions from the mass units. For this we need the molar mass of the substances involved. We calculate as follows:
31.3 g </span>(NH4)2CO3 ( 1 mol (NH4)2CO3 / 96.09 g (NH4)2CO3) ( 2 mol NH4 / 1 mol (NH4)2CO3 ) = 0.65 mol <span>ammonium ions</span>
Zinc would be considered the strongest reducing agent.
<h3>Reducing agent</h3>
A reducing agent is a chemical species that "donates" one electron to another chemical species in chemistry (called the oxidizing agent, oxidant, oxidizer, or electron acceptor). Earth metals, formic acid, oxalic acid, and sulfite compounds are a few examples of common reducing agents.
Reducers have excess electrons (i.e., they are already reduced) in their pre-reaction states, whereas oxidizers do not. Usually, a reducing agent is in one of the lowest oxidation states it can be in. The oxidation state of the oxidizer drops while the oxidizer's oxidation state, which measures the amount of electron loss, increases. The agent in a redox process whose oxidation state rises, which "loses/donates electrons," which "oxidizes," and which "reduces" is known as the reducer or reducing agent.
Learn more about reducing agent here:
brainly.com/question/2890416
#SPJ4
<h3 />
Answer:
attached below
Explanation:
Structure of two acyclic compounds with 3 or more carbons that exhibits one singlet in 1H-NMR spectrum
a) Acetone CH₃COCH₃
Attached below is the structure
b) But-2-yne (CH₃C)₂
Attached below is the structure