Answer:
They gave you the equation; Cp=,
just plug everything in! You’ve seen this; I have long ago, but we had different units. Sorry, but it’s right there! Go get it!
Explanation:
Answer:
-26.125 kj
Explanation:
Given data:
Mass of water = 250.0 g
Initial temperature = 30.0°C
Final temperature = 5.0°C
Amount of energy lost = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
ΔT = 5.0°C - 30.0°C
ΔT = -25°C
Specific heat of water is 4.18 j/g.°C
Now we will put the values in formula.
Q = m.c. ΔT
Q = 250.0 g × 4.18 j/g.°C × -25°C
Q = -26125 j
J to kJ
-26125 j ×1 kj /1000 j
-26.125 kj
Answer:
Total cost = $40.25 (Approx)
Explanation:
Given:
Per ounce = $1.15
Number of student = 28
Each student eat = 0.035 kg
Find:
Total cost
Computation:
Total weight of candy = 28 × 0.035 kg
Total weight of candy = 0.98 kg
1 ounce = 0.028 kg (approx).
Total weight of candy = 0.98 kg / 0.028
Total weight of candy = 35 ounce (Approx)
Total cost = 35 × $1.15
Total cost = $40.25 (Approx)
Wave "B" is thinner. Is this the whole question?
Answer:
2.61 g of NO will be formed
The limiting reagent is the O₂
Explanation:
The reaction is:
4NH₃ + 5O₂ → 4NO + 6H₂O
We convert the mass of the reactants to moles:
3.25g / 17 g/mol = 0.191 moles of NH₃
3.50g / 32 g/mol =0.109 moles of O₂
Let's determine the limiting reactant by stoichiometry:
4 moles of ammonia react with 5 moles of oxygen
Then, 0.191 moles of ammonia will react with (0.191 . 5) / 4 = 0.238 moles of oxygen. We only have 0.109 moles of O₂ and we need 0.238, so as the oxygen is not enough, this is the limiting reagent
Ratio with NO is 5:4
5 moles of oxygen produce 4 moles of NO
0.109 moles will produce (0.109 . 4)/ 5 = 0.0872 moles of NO
We convert the moles to mass, to get the answer
0.0872 mol . 30g / 1 mol = 2.61 g