Answer:
a[n] = a[n-1]×(4/3)
a[1] = 1/2
Step-by-step explanation:
The terms of a geometric sequence have an initial term and a common ratio. The common ratio multiplies the previous term to get the next one. That sentence describes the recursive relation.
The general explicit term of a geometric sequence is ...
a[n] = a[1]×r^(n-1) . . . . . where a[1] is the first term and r is the common ratio
Comparing this to the expression you are given, you see that ...
a[1] = 1/2
r = 4/3
(You also see that parenthses are missing around the exponent expression, n-1.)
A recursive rule is defined by two things:
- the starting value(s) for the recursive relation
- the recursive relation relating the next term to previous terms
The definition of a geometric sequence tells you the recursive relation is:
<em>the next term is the previous one multiplied by the common ratio</em>.
In math terms, this looks like
a[n] = a[n-1]×r
Using the value of r from above, this becomes ...
a[n] = a[n-1]×(4/3)
Of course, the starting values are the same for the explicit rule and the recursive rule:
a[1] = 1/2
Answer:
function a is faster
Step-by-step explanation:
Answer:
2.) 7.8
Step-by-step explanation:
We can use Pythagorean theorem
a^2 + b^2 = c^2 where a and b are the legs and c is the hypotenuse
5^2 + 6^2 = c^2
25+36 = c^2
61 = c^2
Take the square root of each side
sqrt(61) = sqrt(c^2)
7.810249676 = c
You can't change more than 100 percent
The answers are:
A) V-Shaped (because absolute value graphs are v-shaped)
C) Opens up (because the leading coefficient is positive)
F) Symmetric with respect to the y-axis (if you look at the graph y= |x|, you see that the y-axis cuts through the middle of the "v-shape", and that it is symmetric)