Answer:
never
Step-by-step explanation:
B. (Not sure)
(5+A)
———
(a-1)
Answer:
first one
Step-by-step explanation:
all value between 1 to 5 except 5 is shown on graph

now, for a rational expression, the domain, or "values that x can safely take", applies to the denominator NOT becoming 0, because if the denominator is 0, then the rational turns to
undefined.
now, what value of "x" makes this denominator turn to 0, let's check by setting it to 0 then.
![\bf 2-x^{12}=0\implies 2=x^{12}\implies \pm\sqrt[12]{2}=x\\\\ -------------------------------\\\\ \cfrac{x^2-9}{2-x^{12}}\qquad \boxed{x=\pm \sqrt[12]{2}}\qquad \cfrac{x^2-9}{2-(\pm\sqrt[12]{2})^{12}}\implies \cfrac{x^2-9}{2-\boxed{2}}\implies \stackrel{und efined}{\cfrac{x^2-9}{0}}](https://tex.z-dn.net/?f=%5Cbf%202-x%5E%7B12%7D%3D0%5Cimplies%202%3Dx%5E%7B12%7D%5Cimplies%20%5Cpm%5Csqrt%5B12%5D%7B2%7D%3Dx%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C%0A%5Ccfrac%7Bx%5E2-9%7D%7B2-x%5E%7B12%7D%7D%5Cqquad%20%5Cboxed%7Bx%3D%5Cpm%20%5Csqrt%5B12%5D%7B2%7D%7D%5Cqquad%20%5Ccfrac%7Bx%5E2-9%7D%7B2-%28%5Cpm%5Csqrt%5B12%5D%7B2%7D%29%5E%7B12%7D%7D%5Cimplies%20%5Ccfrac%7Bx%5E2-9%7D%7B2-%5Cboxed%7B2%7D%7D%5Cimplies%20%5Cstackrel%7Bund%20efined%7D%7B%5Ccfrac%7Bx%5E2-9%7D%7B0%7D%7D)
so, the domain is all real numbers EXCEPT that one.
Because both of them are congruent triangles.
The have sides that equal to each other, angles that equal to each other and a common base.