Answer:
a. 0.2639 or 26.39%
b. 0.6242 or 62.42%
Step-by-step explanation:
This problem can be treated as a binomial model with probability of success p = proportion of defectives in the batch.
Number of trials (n) = 10.
For any number of successes 'k', the probability is:
![P(X=k) = \frac{n!}{(n-k)!k!}*p^k*(1-p)^{n-k}](https://tex.z-dn.net/?f=P%28X%3Dk%29%20%3D%20%5Cfrac%7Bn%21%7D%7B%28n-k%29%21k%21%7D%2Ap%5Ek%2A%281-p%29%5E%7Bn-k%7D)
a. If p =0.10, what is P(x >1):
![P(X>1) = 1- P(X=0)-P(X=1)\\P(X>1) =1- \frac{10!}{(10-0)!0!}*0.10^0*(1-0.10)^{10-0}- \frac{10!}{(10-1)!1!}*0.10^1*(1-0.10)^{10-1}\\P(X>1) = 1-0.348678-0.287420\\P(X>1) =0.2639](https://tex.z-dn.net/?f=P%28X%3E1%29%20%3D%201-%20P%28X%3D0%29-P%28X%3D1%29%5C%5CP%28X%3E1%29%20%3D1-%20%5Cfrac%7B10%21%7D%7B%2810-0%29%210%21%7D%2A0.10%5E0%2A%281-0.10%29%5E%7B10-0%7D-%20%5Cfrac%7B10%21%7D%7B%2810-1%29%211%21%7D%2A0.10%5E1%2A%281-0.10%29%5E%7B10-1%7D%5C%5CP%28X%3E1%29%20%3D%201-0.348678-0.287420%5C%5CP%28X%3E1%29%20%3D0.2639)
The probability is 0.2639 or 26.39%.
b. If p =0.20, what is P(x >1):
![P(X>1) = 1- P(X=0)-P(X=1)\\P(X>1) =1- \frac{10!}{(10-0)!0!}*0.20^0*(1-0.20)^{10-0}- \frac{10!}{(10-1)!1!}*0.20^1*(1-0.20)^{10-1}\\P(X>1) = 1-0.107374-0.268435\\P(X>1) =0.6242](https://tex.z-dn.net/?f=P%28X%3E1%29%20%3D%201-%20P%28X%3D0%29-P%28X%3D1%29%5C%5CP%28X%3E1%29%20%3D1-%20%5Cfrac%7B10%21%7D%7B%2810-0%29%210%21%7D%2A0.20%5E0%2A%281-0.20%29%5E%7B10-0%7D-%20%5Cfrac%7B10%21%7D%7B%2810-1%29%211%21%7D%2A0.20%5E1%2A%281-0.20%29%5E%7B10-1%7D%5C%5CP%28X%3E1%29%20%3D%201-0.107374-0.268435%5C%5CP%28X%3E1%29%20%3D0.6242)
The probability is 0.6242 or 62.42%.