The vector function is, r(t) = 
Given two surfaces for which the vector function corresponding to the intersection of the two need to be found.
First surface is the paraboloid, 
Second equation is of the parabolic cylinder, 
Now to find the intersection of these surfaces, we change these equations into its parametrical representations.
Let x = t
Then, from the equation of parabolic cylinder,
.
Now substituting x and y into the equation of the paraboloid, we get,

Now the vector function, r(t) = <x, y, z>
So r(t) = 
Learn more about vector functions at brainly.com/question/28479805
#SPJ4
Answer:
150
Step-by-step explanation:
one third of 2700 = 900
900/2 = 450
450/3 = 150
Answer:
You post the MCP problems here? Lol
Step-by-step explanation:
haha
ill tell mr aram someday ;p
Answer:
y(t) = c₁ e^(-1/2 t) cos(√3/2 t) + c₂ e^(-1/2 t) sin(√3/2 t) + 1
Step-by-step explanation:
y" + y' + y = 1
This is a second order nonhomogenous differential equation with constant coefficients.
First, find the roots of the complementary solution.
y" + y' + y = 0
r² + r + 1 = 0
r = [ -1 ± √(1² − 4(1)(1)) ] / 2(1)
r = [ -1 ± √(1 − 4) ] / 2
r = -1/2 ± i√3/2
These roots are complex, so the complementary solution is:
y = c₁ e^(-1/2 t) cos(√3/2 t) + c₂ e^(-1/2 t) sin(√3/2 t)
Next, assume the particular solution has the form of the right hand side of the differential equation. In this case, a constant.
y = c
Plug this into the differential equation and use undetermined coefficients to solve:
y" + y' + y = 1
0 + 0 + c = 1
c = 1
So the total solution is:
y(t) = c₁ e^(-1/2 t) cos(√3/2 t) + c₂ e^(-1/2 t) sin(√3/2 t) + 1
To solve for c₁ and c₂, you need to be given initial conditions.
Answer:
21.42 cloves of garlic
Step-by-step explanation:
50 ÷ 7 = 7.14
7.14 x 3 = 21.42