Answer: see proof below
<u>Step-by-step explanation:</u>
Use the Double Angle Identity: sin 2Ф = 2sinФ · cosФ
Use the Sum/Difference Identities:
sin(α + β) = sinα · cosβ + cosα · sinβ
cos(α - β) = cosα · cosβ + sinα · sinβ
Use the Unit circle to evaluate: sin45 = cos45 = √2/2
Use the Double Angle Identities: sin2Ф = 2sinФ · cosФ
Use the Pythagorean Identity: cos²Ф + sin²Ф = 1
<u />
<u>Proof LHS → RHS</u>
LHS: 2sin(45 + 2A) · cos(45 - 2A)
Sum/Difference: 2 (sin45·cos2A + cos45·sin2A) (cos45·cos2A + sin45·sin2A)
Unit Circle: 2[(√2/2)cos2A + (√2/2)sin2A][(√2/2)cos2A +(√2/2)·sin2A)]
Expand: 2[(1/2)cos²2A + cos2A·sin2A + (1/2)sin²2A]
Distribute: cos²2A + 2cos2A·sin2A + sin²2A
Pythagorean Identity: 1 + 2cos2A·sin2A
Double Angle: 1 + sin4A
LHS = RHS: 1 + sin4A = 1 + sin4A 
25 times :) hope this helped!
Answer:
The Least Common Multiple ( LCM ) is also referred to as the Lowest Common Multiple (LCM) and Least Common Divisor (LCD). For two integers a and b, denoted LCM (a,b), the LCM is the smallest positive integer that is evenly divisible by both a and b. For example, LCM (2,3) = 6 and LCM (6,10) = 30.
Step-by-step explanation:
Answer: x=15
Step-by-step explanation: Let's solve your equation step-by-step.
x+
1
/2
(x−5)=20
Step 1: Simplify both sides of the equation.
x+
1
/2
(x−5)=20
x+(
1
/2
)(x)+(
1
/2
)(−5)=20(Distribute)
x+
1
/2
x+ −5
/2
=20
(x+
1
/2
x)+(
−5
/2
)=20(Combine Like Terms)
3
/2
x + −5
/2
=20
3
/2
x + −5
/2
=20
Step 2: Add 5/2 to both sides.
3
/2
x + −5
/2 + 5
/2
=20+
5
/2
3
/2
x= 45
/2
Step 3: Multiply both sides by 2/3.
(
2
/3
)*(
3
/2
x)=(
2
/3
)*(
45
/2
)
x=15
Answer:
B Right octbuse A acute D Right