<u>Answer:</u> The number of electrons in given amount of silver are 
<u>Explanation:</u>
To calculate the number of moles, we use the equation:

We are given:
Given mass of silver = 7.1 g
Molar mass of silver = 107.87 g/mol
Putting values in above equation, we get:

Number of electrons in 1 atom of silver = 47
According to mole concept:
1 mole of an element contains
number of particles
So, 0.066 moles of silver will contain = -
number of electrons
Hence, the number of electrons in given amount of silver are 
Answer
given,
resistance = 0.05 Ω
internal resistance of battery = 0.01 Ω
electromotive force = 12 V
a) ohm's law
V = IR
and volage
now,

inserting the values
I = 200 A
b) Voltage
V = I R
V = 200 x 0.05
V = 10 V
c) Power
P = I V
P = 200 x 10 = 2000 W
d) total resistance = 0.05 + 0.09 = 0.14 Ω
I = 80 A
V = 80 x 0.05 = 4 V
P = 4 x 80 = 320 W
Given the following in the problem:
Distances : 2.0 m and 4.0 m
Sound waves : 1700 hz
Speed of sound : 340 m/s
Get the wavelength of the sound by using the formula:
Lambda = speed of sound/sound waves
Lambda = 340 m/s / 1700 hz
Lambda = 0.2
Get the path length difference to the point from the two speakers
L1 = 4mL2 = sqrt (42+ 22) m
Delta = 4.47
x = delta / lambda
If the outcome is nearly an integer, the waves strengthen at the point. If it is nearly an integer +0.5 the waves interfere destructively at the point. If it is neither the point is somewhat in in the middle.
Solving x = (4.47 – 4) / (0.2) = 2.35 an integer +0.5 so it’s a point of destructive interference.
A= v²/R
a = 12²/30 =4.8 m/s²
: the force that is necessary to keep an object moving in a curved path and that is directed inward toward the center of rotation a string on the end of which a stone is whirled about exerts centripetal<span> force on the stone — compare centrifugal force.</span>