Answer:
C
Explanation:
First the water heats up to the boiling point ( temp increases)
then, as it boils it remains at constant temp ( boiling point)
-Surgen de una interacción.
-Nunca aparece una sola: son dos y simultáneas.
-Actúan sobre cuerpos diferentes: una en cada cuerpo.
-Nunca forman un par de fuerzas: tienen la misma línea de acción.
-Un cuerpo que experimenta una única interacción no está en equilibrio, pues sobre el aparece una fuerza unica que lo acelera. Para estar en equilibrio se requieren por lo menos dos interacciones.
Las mas importantes son la 2,3,4 característica
(1) The wavelength of the wave is 1.164 m.
(2) The velocity of the wave is 23.7 m/s.
(3) The maximum speed in the y-direction of any piece of the string is 6.14 m/s.
<h3>
Wavelength of the wave</h3>
A general wave equation is given as;
y(x, t) = A sin(Kx - ωt)
<h3>Velocity of the wave</h3>
v = ω/K
From the given wave equation, we have,
y(x, t) = 0.048 sin(5.4x - 128t)
v = ω/K
where;
- ω corresponds to 128
- k corresponds to 5.4
v = 128/5.4
v = 23.7 m/s
<h3>Wavelength of the wave</h3>
λ = 2π/K
λ = (2π)/(5.4)
λ = 1.164 m
<h3>Maximum speed of the wave</h3>
v(max) = Aω
where;
- A is amplitude of the wave
- ω is angular speed of the wave
v(max) = (0.048)(128)
v(max) = 6.14 m/s
Thus, the wavelength of the wave is 1.164 m.
The velocity of the wave is 23.7 m/s.
The maximum speed in the y-direction of any piece of the string is 6.14 m/s.
Learn more about wavelength here: brainly.com/question/10728818
#SPJ1
Actual plate movements can be made les frequent.
Answer:
f = 19,877 cm and P = 5D
Explanation:
This is a lens focal length exercise, which must be solved with the optical constructor equation
1 / f = 1 / p + 1 / q
where f is the focal length, p is the distance to the object and q is the distance to the image.
In this case the object is placed p = 25 cm from the eye, to be able to see it clearly the image must be at q = 97 cm from the eye
let's calculate
1 / f = 1/97 + 1/25
1 / f = 0.05
f = 19,877 cm
the power of a lens is defined by the inverse of the focal length in meters
P = 1 / f
P = 1 / 19,877 10-2
P = 5D