1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Minchanka [31]
3 years ago
9

john has $8 less than Sophie. Tiffany has three times as much as John. Together they have $192. How much does each person have?

Mathematics
1 answer:
riadik2000 [5.3K]3 years ago
6 0
John does each person have? is 200
You might be interested in
4 What is the value of 4÷2<br> 15 3​
valina [46]

Answer:

It's 2

Step-by-step explanation:

It was easy......

5 0
3 years ago
2.7·6.2–9.3·1.2+6.2·9.3–1.2·2.7 not pemdas
antiseptic1488 [7]

<em></em>

<em>60</em>

<em>See steps</em>

<em>Step by Step Solution:</em>

<em>More Icon</em>

<em>Reformatting the input :</em>

<em>Changes made to your input should not affect the solution:</em>

<em />

<em>(1): "2.7" was replaced by "(27/10)". 8 more similar replacement(s)</em>

<em />

<em>STEP</em>

<em>1</em>

<em>:</em>

<em>            27</em>

<em> Simplify   ——</em>

<em>            10</em>

<em>Equation at the end of step</em>

<em>1</em>

<em>:</em>

<em>     27 62   93 12    62 93    12 27</em>

<em>  (((——•——)-(——•——))+(——•——))-(——•——)</em>

<em>     10 10   10 10    10 10    10 10</em>

<em>STEP</em>

<em>2</em>

<em>:</em>

<em>            6</em>

<em> Simplify   —</em>

<em>            5</em>

<em>Equation at the end of step</em>

<em>2</em>

<em>:</em>

<em>     27 62   93 12    62 93    6 27</em>

<em>  (((——•——)-(——•——))+(——•——))-(—•——)</em>

<em>     10 10   10 10    10 10    5 10</em>

<em>STEP</em>

<em>3</em>

<em>:</em>

<em>            93</em>

<em> Simplify   ——</em>

<em>            10</em>

<em>Equation at the end of step</em>

<em>3</em>

<em>:</em>

<em>     27 62   93 12    62 93   81</em>

<em>  (((——•——)-(——•——))+(——•——))-——</em>

<em>     10 10   10 10    10 10   25</em>

<em>STEP</em>

<em>4</em>

<em>:</em>

<em>            31</em>

<em> Simplify   ——</em>

<em>            5 </em>

<em>Equation at the end of step</em>

<em>4</em>

<em>:</em>

<em>     27 62   93 12    31 93   81</em>

<em>  (((——•——)-(——•——))+(——•——))-——</em>

<em>     10 10   10 10    5  10   25</em>

<em>STEP</em>

<em>5</em>

<em>:</em>

<em>            6</em>

<em> Simplify   —</em>

<em>            5</em>

<em>Equation at the end of step</em>

<em>5</em>

<em>:</em>

<em>     27 62   93 6   2883  81</em>

<em>  (((——•——)-(——•—))+————)-——</em>

<em>     10 10   10 5    50   25</em>

<em>STEP</em>

<em>6</em>

<em>:</em>

<em>            93</em>

<em> Simplify   ——</em>

<em>            10</em>

<em>Equation at the end of step</em>

<em>6</em>

<em>:</em>

<em>     27 62   93 6   2883  81</em>

<em>  (((——•——)-(——•—))+————)-——</em>

<em>     10 10   10 5    50   25</em>

<em>STEP</em>

<em>7</em>

<em>:</em>

<em>            31</em>

<em> Simplify   ——</em>

<em>            5 </em>

<em>Equation at the end of step</em>

<em>7</em>

<em>:</em>

<em>     27   31     279     2883     81</em>

<em>  (((—— • ——) -  ———) +  ————) -  ——</em>

<em>     10   5      25       50      25</em>

<em>STEP</em>

<em>8</em>

<em>:</em>

<em>            27</em>

<em> Simplify   ——</em>

<em>            10</em>

<em>Equation at the end of step</em>

<em>8</em>

<em>:</em>

<em>     27   31     279     2883     81</em>

<em>  (((—— • ——) -  ———) +  ————) -  ——</em>

<em>     10   5      25       50      25</em>

<em>STEP</em>

<em>9</em>

<em>:</em>

<em>Calculating the Least Common Multiple</em>

<em> 9.1    Find the Least Common Multiple</em>

<em />

<em>      The left denominator is :       50 </em>

<em />

<em>      The right denominator is :       25 </em>

<em />

<em>        Number of times each prime factor</em>

<em>        appears in the factorization of:</em>

<em> Prime </em>

<em> Factor   Left </em>

<em> Denominator   Right </em>

<em> Denominator   L.C.M = Max </em>

<em> {Left,Right} </em>

<em>2 1 0 1</em>

<em>5 2 2 2</em>

<em> Product of all </em>

<em> Prime Factors  50 25 50</em>

<em />

<em>      Least Common Multiple:</em>

<em>      50 </em>

<em />

<em>Calculating Multipliers :</em>

<em> 9.2    Calculate multipliers for the two fractions</em>

<em />

<em />

<em>    Denote the Least Common Multiple by  L.C.M </em>

<em>    Denote the Left Multiplier by  Left_M </em>

<em>    Denote the Right Multiplier by  Right_M </em>

<em>    Denote the Left Deniminator by  L_Deno </em>

<em>    Denote the Right Multiplier by  R_Deno </em>

<em />

<em>   Left_M = L.C.M / L_Deno = 1</em>

<em />

<em>   Right_M = L.C.M / R_Deno = 2</em>

<em />

<em />

<em>Making Equivalent Fractions :</em>

<em> 9.3      Rewrite the two fractions into equivalent fractions</em>

<em />

<em>Two fractions are called equivalent if they have the same numeric value.</em>

<em />

<em>For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.</em>

<em />

<em>To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.</em>

<em />

<em>   L. Mult. • L. Num.      837</em>

<em>   ——————————————————  =   ———</em>

<em>         L.C.M             50 </em>

<em />

<em>   R. Mult. • R. Num.      279 • 2</em>

<em>   ——————————————————  =   ———————</em>

<em>         L.C.M               50   </em>

<em>Adding fractions that have a common denominator :</em>

<em> 9.4       Adding up the two equivalent fractions</em>

<em>Add the two equivalent fractions which now have a common denominator</em>

<em />

<em>Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:</em>

<em />

<em> 837 - (279 • 2)     279</em>

<em> ———————————————  =  ———</em>

<em>       50            50 </em>

<em>Equation at the end of step</em>

<em>9</em>

<em>:</em>

<em>   279    2883     81</em>

<em>  (——— +  ————) -  ——</em>

<em>   50      50      25</em>

<em>STEP</em>

<em>10</em>

<em>:</em>

<em>Adding fractions which have a common denominator</em>

<em> 10.1       Adding fractions which have a common denominator</em>

<em>Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:</em>

<em />

<em> 279 + 2883     1581</em>

<em> ——————————  =  ————</em>

<em>     50          25 </em>

<em>Equation at the end of step</em>

<em>10</em>

<em>:</em>

<em>  1581    81</em>

<em>  ———— -  ——</em>

<em> </em>  25     25

STEP

11

:

Adding fractions which have a common denominator

11.1       Adding fractions which have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

1581 - (81)     60

———————————  =  ——

    25          1

Final result :

 60

7 0
3 years ago
1. Let x[n] be a signal with x[n] = 0 for n&lt;-1 and n &gt; 3. For each signal given below, determine the values of n for which
valentina_108 [34]

Answer:

a) n<1 and n>5

b)  0 < n < -4

c)  n > 2 and n < -2

Step-by-step explanation:

The signal is given by x[n] = 0 for n < -1 and n > 3

The problem asks us to determine the values of n for which it's guaranteed to be zero.

a) x[n-2]

We know that n -2 must be less than -1 or greater than 3.

Therefore we're going to write down our inequalities and solve for n

n-2

Therefore for n<1 and n>5 x [n-2] will be zero

b) x [n+ 3]

Similarly, n + 3 must be less than -1 or greater than 3

n+30

Therefore for n< -4 and n>0, in other words, for 0 < n < -4  x[n-2] will be zero

c)x [-n + 1]

Similarly, -n+1 must be less than -1 or greater than 3

-n+13-1\\-n>2\\n

Therefore, for n > 2 and n < -2  x[-n+1] will be zero

4 0
4 years ago
Marcus baked a loaf of banana bread for a party. He cut the loaf into equal size pieces. At the end of the party, there were 6 p
iris [78.8K]

Answer:

6*4 = 24

Step-by-step explanation:

Hopefully that helps, and you can write fractions as x/y.

7 0
3 years ago
Read 2 more answers
1.25 x 8 - 1.5<br><br> please help me
evablogger [386]

Answer:

The answer is, 8.5

Step-by-step explanation:

1.25×8=10

10-1.5=8.5

7 0
3 years ago
Read 2 more answers
Other questions:
  • erald jumped from a bungee tower. If the equation that models his height, in feet, is h = –16t2 + 729, where t is the time in se
    10·2 answers
  • How to solve 2x squared -6x-+=0<br><img src="https://tex.z-dn.net/?f=%20%7B2x%7D%5E%7B2%7D%20%20-%206x%20-%201%20%3D%200" id="Te
    15·1 answer
  • For the point Pleft parenthesis 5 comma 2 right parenthesis and Qleft parenthesis 12 comma 7 right parenthesis​, find the distan
    9·1 answer
  • Please Help!!!!
    10·1 answer
  • How do you divide fractions with different denominators and whole numbers
    15·1 answer
  • Need help with 25 points included
    13·1 answer
  • 20 POINTS Find the diameter?? Pls help I dont know what to do..
    9·1 answer
  • Is 2 3/4 less than 2.56
    11·2 answers
  • 7-2 Practice Questions
    11·1 answer
  • Divide 5 3/4 ÷ 1 1/2
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!