Answer:
So the answer for this case would be n=67 rounded up
Step-by-step explanation:
Information given
represent the sample mean for the sample
population mean
represent the sample standard deviation
n represent the sample size
Solution to the problem
The margin of error is given by this formula:
(a)
And on this case we have that ME =400 and we are interested in order to find the value of n, if we solve n from equation (a) we got:
(b)
The critical value for 98% of confidence interval now can be founded using the normal distribution. And the critical value would be
, replacing into formula (b) we got:
So the answer for this case would be n=67 rounded up
A word to the wise: It's <span> f(x)=125(0.9)^x, where ^ represents exponentiation.
In this case the ave. value over the interval [11, 15] is
125(0.9)^15 - 125(0.9)^11
------------------------------------- = (125/4) [ 0.9^15 - 0.9^11)
15 - 11 = (31.25) [ 0.2059 - 0.3138 ] = a negative result
= (31.25)(-0.1079) = -3.372 (av. r. of c.
over the interval [11,15] )
Do the same thing for the time interval [1,5]. Then compare the two rates of change.</span>
X+y=6
x=10
10+y=6
y=-4
10=-4+z
-4+z=10
z=10+4
z=14
So the correct answer is 14
Answer:
86
Step-by-step explanation: