Check the picture below. So the parabola looks more or less like so.
let's recall that the vertex is half-way between the focus point and the directrix, at "p" units away from both.
Let's notice that the focus point is below the directrix, that means the parabola is vertical, namely the squared variable is the "x", and it also means that it's opening downwards as you see in the picture, namely that "p" is negative, in this case "p" is 1 unit, and thus is -1.
![\bf \textit{parabola vertex form with focus point distance} \\\\ \begin{array}{llll} 4p(x- h)=(y- k)^2 \\\\ \stackrel{\textit{we'll use this one}}{4p(y- k)=(x- h)^2} \end{array} \qquad \begin{array}{llll} vertex\ ( h, k)\\\\ p=\textit{distance from vertex to }\\ \qquad \textit{ focus or directrix} \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \begin{cases} h=-2\\ k=5\\ p=-1 \end{cases}\implies 4(-1)(y-5)=[x-(-2)]^2\implies -4(y-5)=(x+2)^2 \\\\\\ y-5=-\cfrac{1}{4}(x+2)^2\implies y=-\cfrac{1}{4}(x+2)^2+5](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bparabola%20vertex%20form%20with%20focus%20point%20distance%7D%20%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7Bllll%7D%204p%28x-%20h%29%3D%28y-%20k%29%5E2%20%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bwe%27ll%20use%20this%20one%7D%7D%7B4p%28y-%20k%29%3D%28x-%20h%29%5E2%7D%20%5Cend%7Barray%7D%20%5Cqquad%20%5Cbegin%7Barray%7D%7Bllll%7D%20vertex%5C%20%28%20h%2C%20k%29%5C%5C%5C%5C%20p%3D%5Ctextit%7Bdistance%20from%20vertex%20to%20%7D%5C%5C%20%5Cqquad%20%5Ctextit%7B%20focus%20or%20directrix%7D%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Cbegin%7Bcases%7D%20h%3D-2%5C%5C%20k%3D5%5C%5C%20p%3D-1%20%5Cend%7Bcases%7D%5Cimplies%204%28-1%29%28y-5%29%3D%5Bx-%28-2%29%5D%5E2%5Cimplies%20-4%28y-5%29%3D%28x%2B2%29%5E2%20%5C%5C%5C%5C%5C%5C%20y-5%3D-%5Ccfrac%7B1%7D%7B4%7D%28x%2B2%29%5E2%5Cimplies%20y%3D-%5Ccfrac%7B1%7D%7B4%7D%28x%2B2%29%5E2%2B5)

<em><u>Solution:</u></em>
Given that we have to find the sum of 
<em><u>Let us first convert the mixed fractions to improper fractions</u></em>
Multiply the whole number part by the fraction's denominator.
Add that to the numerator.
Then write the result on top of the denominator
Therefore,

Now we can add both the fractions

Make the denominators same

Now convert the fraction to mixed number
When we divide 53 by 10 , the remainder is 3
Therefore, write 5 as a whole number and and 3 as numerator and 10 as denominator

Thus the sum of given mixed fraction is 
Answer:
1/16 chance that it will land on 16 because there are 16 faces