The
<u>correct diagram</u> is attached.
Explanation:
Using technology (such as Geogebra), first construct a line segment. Name the endpoints C and D.
Construct the perpendicular bisector of this segment. Label the intersection point with CD as B, and create another point A above it.
Measure the distance from C to B and from B to D. They will be the same.
Measure the distance from A to B. If it is not the same as that from C to B, slide A along line AB until the distance is the same.
Using a compass and straightedge:
First construct segment CD, being sure to label the endpoints.
Set your compass a little more than halfway from C to D. With your compass set on C, draw an arc above segment CD.
With your compass set on D (the same distance as before) draw an arc above segment CD to intersect your first arc. Mark this intersection point as E.
Connect E to CD using a straightedge; mark the intersection point as B.
Set your compass the distance from C to B. With your compass on B, mark an arc on EB. Mark this intersection point as A.
AB will be the same distance as CB and BD.
Una linea recta ( cualquier eje coordenado es una línea recta) queda definida si se conocen dos puntos que están sobre ella.
Solución:
Ecuación del eje x y = 0
Ecuación del eje y x = 0
Para darle respuesta a la pregunta podemos seguir el siguiente procedimiento:
- Escogemos dos puntos arbitrarios sobre el eje x, por ejemplo
P ( 2 ; 0 ) y Q ( 5 ; 0 ) ( todos los puntos sobre el eje x tienen coordenada y = 0.
Según la cual m = (y₂ - y₁)/ ( x₂ - x₁ ) m = 0
- Usamos la ecuación pendiente-Intercepto
y = m×x + b donde m es la pendiente y b el intercepto con el eje y
y entonces tenemos:
- m = 0 b ( 0 ; 0 )
- Por sustitución en la ecuación pendiente-intercepto
y = 0
Procediendo de forma similar obtendremos la ecuación del eje y
P´( 0 ; 4 ) Q´( 0 : 8 ) entonces
y = m×x + b
En este caso, la pendiente no es definida ( tang 90° ) y b es de nuevo el punto b ( 0 ; 0).
A partir de que todos y cada uno de los puntos sobre el eje y son de valor 0 para x, concluímos que ecuación del eje y es
x = 0
Enlaces de interés:brainly.com/question/21135669?
Answer:
x = t - 
Step-by-step explanation:
Given
t = x +
( isolate x by subtracting
from both sides )
t -
= x
Answer:
89 feet
Step-by-step explanation:
First of all, we will make a diagram to demonstrate the given scenario as shown in the attached picture.
Now we will use similar triangles to set the ratios as shown below to figure out the height of the building.

Now we will solve for x from this equation by cross multiplying.



Therefore, height of the building is approximately 89 feet.