Answer:
z²^30
Step-by-step explanation:
This is it enjoy.
Answer:
12a. 471.2 cm²
12b. 60 m²
Step-by-step explanation:
Part A.
The surface area of each figure is the sum of the end area and the lateral area.
<u>cylinder</u>
S = (2)(πr²) +2πrh = 2πr(r +h)
S = 2π(5 cm)(5 cm +10 cm) =150π cm² ≈ 471.2 cm²
__
<u>triangular prism</u>
S = (2)(1/2)bh + PL . . . . b=triangle base; h=triangle height; P=triangle perimeter; L=length of prism
S = (4 m)(1.5 m) + ((4 + 2·2.5) m)(6 m) = (6 + 54) m² = 60 m²
_____
Part B.
Surface area is useful in the real world wherever products are made from sheets of material or wherever coverings are applied.
Carpeting or other flooring, paint, wallpaper are all priced in terms of the area they cover, for example.
The amount of material used to make containers in the shapes shown will depend on the area of these containers (and any material required for seams).
The question given is incomplete, I googled and got the complete question as below:
You are a waterman daily plying the waters of Chesapeake Bay for blue crabs (Callinectes sapidus), the best-tasting crustacean in the world. Crab populations and commercial catch rates are highly variable, but the fishery is under constant pressure from over-fishing, habitat destruction, and pollution. These days, you tend to pull crab pots containing an average of 2.4 crabs per pot. Given that you are economically challenged as most commercial fishermen are, and have an expensive boat to pay off, you’re always interested in projecting your income for the day. At the end of one day, you calculate that you’ll need 7 legal-sized crabs in your last pot in order to break even for the day. Use these data to address the following questions. Show your work.
a. What is the probability that your last pot will have the necessary 7 crabs?
b. What is the probability that your last pot will be empty?
Answer:
a. Probability = 0.0083
b. Probability = 0.0907
Step-by-step explanation:
This is Poisson distribution with parameter λ=2.4
a)
The probability that your last pot will have the necessary 7 crabs is calculated below:
P(X=7)= {e-2.4*2.47/7!} = 0.0083
b)
The probability that your last pot will be empty is calculated as:
P(X=0)= {e-2.4*2.40/0!} = 0.0907
Answer:
f(n) = -n^2 -3n +5
Step-by-step explanation:
Suppose the formula is ...
f(n) = an^2 +bn +c
Then we have ...
f(1) = 1 = a(1^2) +b(1) +c
f(2) = -5 = a(2^2) +b(2) +c
f(3) = -13 = a(3^2) +b(3) +c
__
Here's a way to solve these equations.
Subtract the first equation from the second:
-6 = 3a +b . . . . . 4th equation
Subtract the second equation from the third:
-8 = 5a +b . . . . . 5th equation
Subtract the fourth equation from the fifth:
-2 = 2a
a = -1
Then substituting into the 4th equation to find b, we have ...
-6 = 3(-1) +b
-3 = b
and ...
1 = -1 +(-3) +c . . . . . substituting "a" and "b" into the first equation
5 = c
The formula is ...
f(n) = -n^2 -3n +5