That means there would be 28 in California and still 12 in Nevada or if California takes from Nevada it would be California 28 and Nevada 2
Answer: y>-3 and x is all real numbers
Answer: first one =109360044xy−36453348x−2, 2nd,=3037778998,last one,=1968480790
Step-by-step explanation:Evaluate for x=3x,y=6y−2
33x(2025186)(6y−2)−2
33x(2025186)(6y−2)−2
=109360044xy−36453348x−2
Evaluate for x=20,y=25
(3)(20)(2025186)(25)−2
(3)(20)(2025186)(25)−2
=3037778998
because 18 is by itself i just did Evaluate for x=18,y=18
(3)(18)(2025186)(18)−2
(3)(18)(2025186)(18)−2
=1968480790
Answer:
The integrals was calculated.
Step-by-step explanation:
We calculate integrals, and we get:
1) ∫ x^4 ln(x) dx=\frac{x^5 · ln(x)}{5} - \frac{x^5}{25}
2) ∫ arcsin(y) dy= y arcsin(y)+\sqrt{1-y²}
3) ∫ e^{-θ} cos(3θ) dθ = \frac{e^{-θ} ( 3sin(3θ)-cos(3θ) )}{10}
4) \int\limits^1_0 {x^3 · \sqrt{4+x^2} } \, dx = \frac{x²(x²+4)^{3/2}}{5} - \frac{8(x²+4)^{3/2}}{15} = \frac{64}{15} - \frac{5^{3/2}}{3}
5) \int\limits^{π/8}_0 {cos^4 (2x) } \, dx =\frac{sin(8x} + 8sin(4x)+24x}{6}=
=\frac{3π+8}{64}
6) ∫ sin^3 (x) dx = \frac{cos^3 (x)}{3} - cos x
7) ∫ sec^4 (x) tan^3 (x) dx = \frac{tan^6(x)}{6} + \frac{tan^4(x)}{4}
8) ∫ tan^5 (x) sec(x) dx = \frac{sec^5 (x)}{5} -\frac{2sec^3 (x)}{3}+ sec x