<u>Correct</u><u> </u><u>question</u><u>:</u><u>-</u>
<u>Prove </u><u>that </u><u>tan9.</u><u>t</u><u>a</u><u>n</u><u>1</u><u>7</u><u>.</u><u>t</u><u>a</u><u>n</u><u>4</u><u>5</u><u>.</u><u>t</u><u>a</u><u>n</u><u>7</u><u>3</u><u>.</u><u>t</u><u>a</u><u>n</u><u>8</u><u>1</u><u>=</u><u>1</u>
<u>LHS</u>






We know that 2x + 5 = 10 - 3x, and because of this we can solve for x.
2x + 5 = 10 - 3x
+3x
5x + 5 = 10
-5
5x = 5
/5
x = 1
We can plug x into each x value to verify if this is true.
2(1) + 5 = 10 - 3(1)
2 + 5 = 10 - 3
7 = 7