Answer:
Genotype
Explanation:
Phenotype refers to traits that physically appear, genotype refers to genetic traits
Answer: Question 1 answer: Skin cells continually replicate
Explanation: The cells in the superficial or upper layers of skin, known as the epidermis, are constantly replacing themselves. This process of renewal is basically exfoliation (shedding) of the epidermis. But the deeper layers of skin, called the dermis, do not go through this cellular turnover and so do not replace themselves.
Question 2 answer: Heart cells undergo terminal differentiation
Explanation: Different cell types (e.g., neurons, skeletal and heart myocytes, adipocytes, keratinocytes) undergo terminal differentiation, in which acquisition of specialized functions entails definitive withdrawal from the cell cycle.
Question 3 answer: DNA replicates in the nucleus
Explanation: DNA replication occurs in the cytoplasm of prokaryotes and in the nucleus of eukaryotes. Regardless of where DNA replication occurs, the basic process is the same. The structure of DNA lends itself easily to DNA replication.
Question 4 answer: The ability to reverse terminal differentiation might affect gene expression in a complex organism
Question 5 answer Cytoplasm replicates during mitosis
Explanation: This process involves replication of the cell's chromosomes, segregation of the copied DNA, and splitting of the parent cell's cytoplasm. ... The outcome of binary fission is two new cells that are identical to the original cell.
White blood cells are made in the bone marrow. They are stored in your blood and lymph tissues. They help the body fight infection and other diseases.
Answer:
Disruptive Selection.
Explanation:
Disruptive selection, also known as selection diversification, explains shifts in population genetics that prefer extreme values for a trait over intermediate values. In this case, trait variation increases, and the population is split into two different classes. So, in the given case where A "U-shaped" distribution for a trait, with high frequencies of individuals who exhibit extreme values for a trait (and few individuals with medium values), is most likely to be caused by Disruptive selection.